Citation: | Niu Jiangchuan, Shen Yongjun, Yang Shaopu, Li Sujuan. PRIMARY RESONANCE OF DUFFING OSCILLATOR WITH FRACTIONAL-ORDER PID CONTROLLER BASED ON VELOCITY FEEDBACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 422-429. DOI: 10.6052/0459-1879-15-332 |
1 李海斌, 毕世华, 方远等. 振动主动控制技术现状及发展. 振动与冲击, 1998, 17(3):38-42(Li Haibin, Bi Shihua, Fang Yuanqiao, et al. An overview and assessment on active vibration control. Journal of Shock and Vibration, 1998, 17(3):38-42(in Chinese))
|
2 曹青松, 洪芸芸, 周继惠等. 基于PSO 自整定PID 控制器的柔性臂振动控制. 振动、测试与诊断, 2014, 34(6):1045-1049(Cao Qingsong, Hong Yunyun, Zhou Jihui, et al. Vibration control of flexible manipulator based on self-tuning PID controller by PSO. Journal of Vibration,Measurement & Diagnosis, 2014, 34(6):1045-1049(in Chinese))
|
3 Thenozhi S, Yu W. Stability analysis of active vibration control of building structures using PD/PID control. Engineering Structures, 2014, 81:208-218
|
4 Zhou LW, Chen GP. Intelligent vibration control for high-speed spinning beam based on fuzzy self-tuning PID controller. Shock and Vibration, 2015, ID:617038
|
5 周兵, 赵保华. 汽车主动悬架自适应模糊PID 控制仿真研究. 湖南大学学报(自然科学版), 2009, 32(16):27-30(Zhou Bing, Zhao Baohua. Simulation study of self-adaptive fuzzy-PID control of active suspension. Journal of Hunan University, 2009, 32(16):27-30(in Chinese))
|
6 Petras I. Fractional-Order Nonlinear Systems. Beijing:Higher Education Press, 2011
|
7 Podlubny I. Fractional Differential Equations, Mathematics in Science and Engineering. New York:Academic Press, 1999
|
8 Shen YJ, Yang SP, Xing HJ, et al. Primary resonance of Duffing oscillator with fractional-order derivative. Communication in Nonlinear Science and Numerical Simulation, 2012, 17(7):3092-3100
|
9 申永军, 杨绍普, 邢海军. 分数阶Duffing 振子的超谐共振. 力学学报, 2012, 44(4):762-767(Shen Yongjun, Yang Shaopu, Xing Haijun. Super-harmonic response of fractional-order Duffing oscillator. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4):762-767(in Chinese))
|
10 Yang SP, Shen YJ. Recent advances in dynamics and control of hysteretic nonlinear systems. Chaos Solitons and Fractals, 2009, 40(4):1808-1822
|
11 Li CP, Deng WH. Remarks on fractional derivatives. Applied Mathematics and Computation, 2007, 187(1):777-784
|
12 Chen LC, Zhu WQ. Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations. International Journal of Non-Linear Mechanics, 2011, 46(10):1324-1329
|
13 曹建雄, 丁恒飞, 李常品. 分数阶扩散方程的隐差分格式. 应用数学与计算数学学报, 2013, 27(1):61-74(Cao Jianxiong, Ding Hengfei, Li Changpin. Implicit difference schemes for fractional diffusion equations. Communication on Applied Mathematics and Computation, 2013, 27(1):61-74(in Chinese))
|
14 Agrawal OP. A quadratic numerical scheme for fractional optimal control problems. Journal of Dynamic Systems Measurement and Control, Transactions of the ASME, 2008, 130(1):011010.1-011010.6
|
15 Chen JH, Chen WC. Chaotic dynamics of the fractionally damped van der Pol equation. Chaos, Solitons and Fractals, 2008, 35(1):188-198
|
16 吴光强, 黄焕军, 叶光湖. 基于分数阶微积分的汽车空气悬架半主动控制. 农业机械学报, 2014, 45(7):19-24(Wu Guangqiang, Huang Huanjun, Ye Guanghu. Semi-active control of automotive air suspension based on fractional calculus. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7):19-24(in Chinese))
|
17 李媛萍, 张卫, 欧阳东. 具有分数导数本构关系的粘弹性浅拱的非线性动力学行为. 振动工程学报, 2012, 25(3):342-350(Li Yuanping, Zhang Wei, Ouyang Dong. Nonlinear dynamic behaviors of viscoelastic shallow arch with fractional derivative constitutive relationship. Journal of Vibration Engineering, 2012, 25(3):342-350(in Chinese))
|
18 Podlubny I. Fractional-order systems and PIλDμ-controllers. IEEE Transactions on Automatic Control, 1999, 44(1):208-214
|
19 陈宁, 陈南, 王乃洲等. 基于分数阶参考模型的车辆悬架自适应控制. 南京林业大学学报, 2009, 33(3):247-253(Chen Ning, Chen Nan, Wang Naizhou, et al. Adaptive control of vehicle suspension using fractional order reference models. Journal of Nanjing Forestry University, 2009, 33(3):116-120(in Chinese))
|
20 赵春娜, 赵雨, 张祥德等. 分数阶控制器与整数阶控制器仿真研究. 系统仿真学报, 2009, 21(3):768-775(Zhao Chunna, Zhao Yu, Zhang Xiangde, et al. Simulation research on fractional order controllers with integer order controllers. Journal of System Simulation, 2009, 21(3):768-775(in Chinese))
|
21 Chen YQ, Petras I, Xue DY. Fractional order control-a tutorial.2009 Conference on American Control Conference, 2009 American Control Conference, St. Louis, MO, USA, 2009-6-10-12. Piscataway:IEEE Press, 2009. 1397-1411
|
22 Ostalczyk PW, Duch P, Brzeziski DW, et al. Order functions selection in the variable-, fractional-order PID controller. Advances in Modelling and Control of Non-integer Order Systems, 6th Conference on Non-integer Order Calculus and Its Applications, Opole, Poland, 2014-11-6-6. New York:Springer Verlag, 2015. 159-170
|
23 薛定宇, 赵春娜. 分数阶系统的分数阶PID 控制器设计. 控制理论与应用, 2007, 24(5):771-775(Xue Dingyu, Zhao Chunna. Fractional order PID controller design for fractional order system. Control Theory & Applications, 2007, 24(5):771-775(in Chinese))
|
24 曹军义, 谢航, 蒋庄德. 分数阶阻尼Duffing 系统的非线性动力学特性. 西安交通大学学报, 2009, 43(3):50-53(Cao Junyi, Xie Hang, Jiang Zhuangde. Nonlinear dynamics of Duffing system with fractional order damping. Journal of Xi'An Jiaotong University, 2009, 43(3):50-53(in Chinese))
|
25 黄建亮, 黄惠仪, 陈恒等. 梁的强非线性超、次谐波共振. 振动与冲击, 2004, 23(1):1-3(Huang Jianliang, Huang Huiyi, Chen Heng, et al. Superharmonic and subharmonic resonances of strongly nonlinear vibration of beams. Journal of Shock and Vibration, 2004, 23(1):1-3(in Chinese))
|
26 刘灿昌, 裘进浩, 孙慧玉等. 悬臂梁智能结构主共振响应的最优化控制. 中国机械工程, 2013, 24(12):1600-1604(Liu Canchang, Qiu Jinhao, Sun Huiyu, et al. Optimal control of primary resonance of smart structures of cantilever beams. China Mechanical Engineering, 2013, 24(12):1600-1604(in Chinese))
|
27 Zillettia M, Elliotta SJ, Gardoniob P, et al. Experimental implementation of a self-tuning control system for decentralised velocity feedback. Journal of Sound and Vibration, 2012, 331(1-2):1-14
|
28 石秀东, 钱林方, 陈龙淼. 基于加速度和速度反馈的半主动减振系统控制策略研究. 南京理工大学学报(自然科学版), 2005, 29(5):556-559(Shi Xiudong, Qian Linfang, Chen Longmiao. Semi-active vibration control strategy based on acceleration and velocity feedback. Journal of Nanjing University of Science and Technology, 2005, 29(5):556-559(in Chinese))
|
29 Zhang T, Li HG, Cai GP, et al. Experimental verifications of vibration suppression for a smart cantilever beam with a modified velocity feedback controller. Shock and Vibration, 2014:172570
|
30 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析. 物理学报, 2012, 61(11):110505(Shen Yongjun, Yang Shaopu, Xing Haijun. Dynamical analysis of linear single degreeof-freedom oscillator with fractional-order derivative. Acta Physica Sinica, 2012, 61(11):110505(in Chinese))
|
31 Shen YJ, Yang SP, Sui CY. Analysis on limit cycle of fractionalorder van der Pol oscillator. Chaos, Solitons & Fractals, 2014, 67:94-102
|
[1] | Fan Shutong, Shen Yongjun. EXTENSION OF MULTI-SCALE METHOD AND ITS APPLICATION TO NONLINEAR VISCOELASTIC SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 495-502. DOI: 10.6052/0459-1879-21-487 |
[2] | Zhang Wenjing, Niu Jiangchuan, Shen Yongjun, Wen Shaofang. COMBINED CONTROL OF VEHICLE SUSPENSION WITH FRACTIONAL-ORDER MAGNETORHEOLOGICAL FLUID DAMPER MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2037-2046. DOI: 10.6052/0459-1879-21-137 |
[3] | Zhang Wanjie, Niu Jiangchuan, Shen Yongjun, Yang Shaopu, Wang Li. DYNAMICAL ANALYSIS ON A KIND OF SEMI-ACTIVE VIBRATION ISOLATION SYSTEMS WITH DAMPING CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1743-1754. DOI: 10.6052/0459-1879-20-147 |
[4] | Li Hang, Shen Yongjun, Li Xianghong, Han Yanjun, Peng Mengfei. PRIMARY AND SUBHARMONIC SIMULTANEOUS RESONANCE OF DUFFING OSCILLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 514-521. DOI: 10.6052/0459-1879-19-349 |
[5] | Jiang Yuan, Shen Yongjun, Wen Shaofang, Yang Shaopu. SUPER-HARMONIC AND SUB-HARMONIC SIMULTANEOUS RESONANCES OF FRACTIONAL-ORDER DUFFING OSCILLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1008-1019. DOI: 10.6052/0459-1879-17-105 |
[6] | Wang Haoyu, Wu Yongjun. THE INFLUENCE OF ONE-TO-ONE INTERNAL RESONANCE ON RELIABILITY OF RANDOM VIBRATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 807-813. DOI: 10.6052/0459-1879-15-058 |
[7] | Shen Yongjun, Zhao Yongxiang, Tian Jiayu, Yang Shaopu. DYNAMICAL ANALYSIS ON A KIND OF SEMI-ACTIVE SUSPENSION WITH TIME DELAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 755-762. DOI: 10.6052/0459-1879-13-017 |
[8] | Shen Yongjun, Yang Shaopu, Xing Haijun. SUPER-HARMONIC RESONANCE OF FRACTIONAL-ORDER DUFFING OSCILLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 762-768. DOI: 10.6052/0459-1879-11-378 |
[9] | NONLINEAR VIBRATION OF THE HIGH DIMENSIONAL SYSTEMS WITH PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 109-113. DOI: 10.6052/0459-1879-1996-1-1995-309 |
[10] | ASYMPTOTIC METHOD FOR PRIMARY RESONANCE OF A STRONGLY NONLINEAR VIBRATION SYSTEM WITH MANY DEGREES OF FREEDOM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(5): 577-586. DOI: 10.6052/0459-1879-1995-5-1995-469 |
1. |
王艳丽,李向红,王敏,申永军. 分数阶Brusselator振子的簇发振动与分岔. 振动与冲击. 2022(08): 304-310+322 .
![]() | |
2. |
孙健华,魏巍,丁维高,谢进. 两项分数阶微分控制的非线性Duffing振子共振特性研究. 机械设计与制造. 2021(02): 268-271+276 .
![]() | |
3. |
蔡思航,丁国斌,李彬. 电力系统故障状态下微弱信号检测方法研究. 能源与环保. 2021(05): 239-245 .
![]() | |
4. |
侯静玉,杨绍普,李强,刘永强. 速度反馈分数阶PID控制对齿轮系统振动特性的影响. 振动与冲击. 2021(23): 175-181 .
![]() | |
5. |
牛江川,赵志爽,邢海军,申永军. 分数阶单自由度间隙振子的受迫振动. 振动与冲击. 2020(14): 251-256+284 .
![]() | |
6. |
刘楚源,刘泽森,宋汉文. 基于主动控制策略的机翼颤振特性模拟. 力学学报. 2019(02): 333-340 .
![]() | |
7. |
姜源,申永军,温少芳. 分数阶van der Pol振子的超谐与亚谐联合共振. 振动工程学报. 2019(05): 863-873 .
![]() | |
8. |
廖川,姜丽娜,贾红宝. 受迫倒摆系统动力学解的数值模拟. 辽宁科技大学学报. 2017(02): 143-147+160 .
![]() | |
9. |
姜源,申永军,温少芳,杨绍普. 分数阶达芬振子的超谐与亚谐联合共振. 力学学报. 2017(05): 1008-1019 .
![]() |