EI、Scopus 收录
中文核心期刊
Zhang Qing, Gu Xin, Yu Yangtian. PERIDYNAMICS SIMULATION FOR DYNAMIC RESPONSE OF GRANULAR MATERIALS UNDER IMPACT LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 56-63. DOI: 10.6052/0459-1879-15-291
Citation: Zhang Qing, Gu Xin, Yu Yangtian. PERIDYNAMICS SIMULATION FOR DYNAMIC RESPONSE OF GRANULAR MATERIALS UNDER IMPACT LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 56-63. DOI: 10.6052/0459-1879-15-291

PERIDYNAMICS SIMULATION FOR DYNAMIC RESPONSE OF GRANULAR MATERIALS UNDER IMPACT LOADING

  • Received Date: July 29, 2015
  • Revised Date: August 06, 2015
  • The dynamic mechanical behavior of granular materials under impact load is a complex issue. Peridynamics as a new theory based on discontinuous and nonlocal hypothesis regards materials as compositions of massive material points with finite volume and finite mass, and builds an integral governing equation to reflect the motion law of material points. For all the features mentioned above, peridynamics is certainly suitable for describing and analyzing the dynamic behavior of particles. An improved PMB model considering the feature of nonlocal long range force and eliminating the “boundary e ect” and a repulsive force model at material point level to describe the inter-particle contact interaction are proposed. Then the method is applied to analyze the dynamics responses of tungsten carbide (WC) ceramic granular system su ering from impact loading. Wave velocities of the system were calculated accurately under di erent impact velocities compared with the experiment results. Phenomena of the motion, including translation and rotation, deformation and crushing of particles are reappeared. There are both total damaged particle and slight damaged particle near the impactor, and there are also particles far out from the impactor which are damaged. The extrusion, collision and shear slide between particles result in the particle crushing. The results indicate that the calculation model and analysis method developed here can well reflect the dynamic behavior of granular materials and have large application value.
  • 1 孙其诚, 王光谦. 颗粒流动力学及其离散模型评述. 力学进展,2008, 38(1): 87-100 (Sun Qicheng, Wang Guangqian. Review on granular flow dynamics and its discrete element method. Advances in Mechanics, 2008, 38(1): 87-100 (in Chinese))
    2 孙其诚, 厚美瑛, 金峰等. 颗粒物质物理与力学. 北京:科学出版 社, 2011 (Sun Qicheng, Hou Meiying, Jin Feng, et al. Physics and Mechanics of Granular Materials. Beijing: Science Press, 2011 (in Chinese))
    3 王乃东, 姚仰平. 粒状材料颗粒破碎的力学特性描述. 工业建 筑, 2008, 38(8): 17-20 (Wang Naidong, Yao Yangping. Mechanical description for granular material exhibiting particle crushing. Industrial Construction, 2008, 38(8): 17-20 (in Chinese))
    4 祁原, 黄俊杰, 陈明祥. 可破碎颗粒体在动力载荷下的耗能特性. 力学学报, 2015, 47(2): 252-259 (Qi Yuan, Huang Junjie, Chen Mingxiang. Energy dissipation characteristics of crushable granules under dynamic excitations. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 252-259 (in Chinese ))
    5 楚锡华. 颗粒材料的离散颗粒模型与离散—— 连续耦合模型及 数值方法. [博士论文]. 大连:大连理工大学, 2007 (Chu Xihua. The discrete particle and coupled discrete-continuum models and numerical methods for granular materials. [PhD Thesis]. Dalian: Dalian University of Technology, 2007 (in Chinese))
    6 Lammi CJ, Vogler TJ. Mesoscale simulations of granular materials with Peridynamics. In: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2011
    7 徐佩华, 黄润秋, 邓辉. 颗粒离散元法的颗粒碎裂研究进展. 工 程地质学报, 2012, 20(3): 410-418 (Xu Peihua, Huang Runqiu, Deng Hui. Advances in fractures of particles with distinct element method. Journal of Engineering Geology, 2012, 20(3): 410-418 (in Chinese))
    8 Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids,2000, 48(1): 175-209
    9 Silling SA, Epton M, Weckner O, et al. Peridynamic states and constitutive modeling. Journal of Elasticity, 2007, 88(2): 151-184
    10 黄丹, 章青, 乔丕忠等. 近场动力学方法及其应用. 力学进展,2010, 40(4): 448-459 (Huang Dan, Zhang Qing, Qiao Pizhong, et al. A review on peridynamics method and its application. Advance in Mechanics, 2010, 40(4): 448-459 (in Chinese))
    11 Kilic B. Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials. [PhD Thesis]. The University of Arizona, 2008
    12 胡祎乐, 余音, 汪海. 基于近场动力学理论的层压板损伤分析方 法. 力学学报, 2013, 45(4): 624-628 (Hu Yile, Yu Yin, Wang Hai. Damage analysis method for laminates based on peridynamic theory. Chinses Journal of Theoretical and Applied Mechanics, 2013,45(4): 624-628 (in Chinese))
    13 顾鑫, 章青, 黄丹. 基于近场动力学方法的混凝土板侵彻问题研 究. 振动与冲击, 2015(录用待刊) (Gu Xin, Zhang Qing, Huang Dan. A study on penetration problem of concrete slabs with peridynamics. Journal of Vibration and Shock, 2015 (in press) (in Chinese))
    14 Van Vooren AJ. A multi-scale approach to a greater understanding of the behavior of heterogeneous materials under dynamic loading. [Master Thesis]. Marquette University, 2013
    15 Peterson AM. Intragranular fracture and frictional e ects on wave propagation through granular media. [Master Thesis]. The University of Texas at San Antonio, 2014
    16 Ren B, Fan H, Bergel GL, et al. A peridynamics-SPH coupling approach to simulate soil fragmentation induced by shock waves. Computational Mechanics, 2014, 1: 1-16
    17 Lai X, Liu LS, Liu QW, et al. Slope stability analysis by peridynamic theory. Applied Mechanics and Materials, 2015, 744: 584-588
    18 Lai X, Ren B, Fan H, et al. Peridynamics simulations of geomaterial fragmentation by impulse loads. International Journal for Numerical and Analytical Methods in Geomechanics, 2015
    19 Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 2005, 83(17):1526-1535
    20 Gerstle WH, Sau N, Sakhavand N. On peridynamic computational simulation of concrete structures. ACI Special Publication, 2009,265
    21 Huang D, Lu G, Qiao P. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. International Journal of Mechanical Sciences, 2015, 94: 111-122
    22 Huang D, Lu G, Wang C, et al. An extended peridynamic approach for deformation and fracture analysis. Engineering Fracture Mechanics,2015 (in press)
    23 Ganzenmüller GC, Hiermaier S, May M. Improvements to the prototype micro-brittle linear elasticity model of peridynamics. arXiv preprint arXiv: 1312. 5543, 2013
    24 Tian X, Du Q. Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM Journal on Numerical Analysis, 2014, 52(4): 1641-1665
    25 Parks ML, Seleson P, Plimpton SJ, et al. Peridynamics with lammps: A user guide v0.3 beta. Sandia Report SAND2011-8523, Sandia National Laboratories, Albuquerque, NM, 2011
    26 Vogler TJ, Lee MY, Grady DE. Static and dynamic compaction of ceramic powders. International Journal of Solids and Structures,2007, 44(2): 636-658
    27 Borg JP, Vogler TJ. Mesoscale calculations of the dynamic behavior of a granular ceramic. International Journal of Solids and Structures,2008, 45(6): 1676-1696
    28 Borg JP, Vogler TJ. Aspects of simulating the dynamic compaction of a granular ceramic. Modelling and Simulation in Materials Science and Engineering, 2009, 17(4): 045003
  • Related Articles

    [1]Chen Kang, Zhang Xiaowei, Long Renrong. STUDY ON THE DYNAMIC RESPONSE OF A CONICAL PROJECTILE SUBJECTED TO IMPACT LOADING AT ITS NOSE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(7): 1-15. DOI: 10.6052/0459-1879-25-116
    [2]Di Honggui, Guo Huiji, Zhou Shunhua, Wang Binglong, He Chao. MULTI COUPLING PERIODIC FINITE ELEMENT METHOD FOR CALCULATING THE DYNAMIC RESPONSE OF UNSATURATED SOIL-STRUCTURE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 163-172. DOI: 10.6052/0459-1879-21-367
    [3]Wang Jiao, Chu Xihua. ANALYSIS OF WAVE BEHAVIOR AND DEFORMATION CHARACTERISTICS OF GRANULAR MATERIALS IN PRO-BORDER ZONE UNDER IMPACT LOAD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2395-2403. DOI: 10.6052/0459-1879-21-242
    [4]Li Zelin, Li Hui, Wang Dongsheng, Ren Chaohui, Zu Xudong, Zhou Jin, Guan Zhongwei, Wang Xiangping. A DYNAMIC RESPONSE PREDICTION MODEL OF FIBER-METAL HYBRID LAMINATED PLATES EMBEDDED WITH VISCOELASTIC DAMPING CORE UNDER LOW-VELOCITY IMPACT EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1690-1699. DOI: 10.6052/0459-1879-20-165
    [5]Xiong Chunbao, Hu Qianqian, Guo Ying. DYNAMIC RESPONSE OF SATURATED POROUS ELASTIC FOUNDATION UNDER POROSITY ANISOTROPY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1120-1130. DOI: 10.6052/0459-1879-20-091
    [6]Huafei Zhou, Jianqun Jiang. Dynamic response of viscoelastic half-space under moving loads[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 545-553. DOI: 10.6052/0459-1879-2007-4-2005-460
    [7]THE LARGE DEFLECTION DYNAMIC PLASTIC RESPONSE OF A NOTCHED CANTILEVER BEAM SUBJECTED TO IMPACT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(1): 48-55. DOI: 10.6052/0459-1879-1993-1-1995-613
    [8]THE SEMI-ANALYTICAL METHOD BASED ON GURTIN VARIATIONAL PRINCIPLES TO SOLVE DYNAMIC RESPONSE OF ONE DIMENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(6): 708-716. DOI: 10.6052/0459-1879-1992-6-1995-794
    [9]NONLINEAR DYNAMIC RESPONSE OF THE CIRCULAR PLATES UNDER IMPACT OF A MASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(4): 420-428. DOI: 10.6052/0459-1879-1990-4-1995-965
    [10]DYNAMIC RESPONSES OF AXISYMMETIUCAL PROBLEMS FOR A VISCOELASTIC PLATE ON A VISCOELASTICFOUNDATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 217-222. DOI: 10.6052/0459-1879-1990-2-1995-936
  • Cited by

    Periodical cited type(31)

    1. 梁绍敏,冯云田,赵婷婷,王志华. 颗粒材料破碎行为数值分析方法研究综述. 力学学报. 2024(01): 1-22 . 本站查看
    2. 华涛,申林方,王志良,李泽,徐则民. 基于近场动力学的岩石水力压裂数值模拟及裂隙网络定量分析. 岩土力学. 2024(02): 612-622 .
    3. 蒋雷雷,沈克纯,潘光,黄毅华. 基于近场动力学理论的圆柱壳体渐进损伤分析. 华中科技大学学报(自然科学版). 2024(03): 105-112 .
    4. 林哲,汪磊,古泉. 一种新型稳定可结合三维本构的近场动力学方法. 厦门大学学报(自然科学版). 2024(02): 305-314 .
    5. 刘造保 ,田锋 ,周金鑫 . 岩石脆性破坏全过程的准态基近场动力学方法. 力学学报. 2024(05): 1395-1410 . 本站查看
    6. 张俊,黄麟淇,刘志祥,李夕兵. 动载下含表面裂纹岩石破坏的近场动力学模拟(英文). Transactions of Nonferrous Metals Society of China. 2024(07): 2313-2327 .
    7. 陈骞,王志良,申林方,华涛,李邵军,徐则民. 基于热力耦合的近场动力学方法高温岩石水力压裂数值模拟. 岩土力学. 2024(08): 2502-2514 .
    8. 栗培龙,宿金菲,孙胜飞,王霄,马云飞. 多级矿料-沥青体系的颗粒特性、界面效应及迁移行为研究进展. 中国公路学报. 2023(01): 1-15 .
    9. 朱竞高,任晓丹. 近场动力学系统中波传播特性的探究. 力学学报. 2023(01): 134-147 . 本站查看
    10. 成嘉禾,顾鑫,章青. 基于键型近场动力学非连续Galerkin有限元法的爆炸毁伤模拟. 应用数学和力学. 2023(04): 394-405 .
    11. 陶明全,彭博,丁兆东. 基于相场理论的早龄期大体积混凝土工程抗裂研究. 工业建筑. 2023(S1): 600-607 .
    12. 李双,吕海宁,黄小华,杨建民. 船用灰铸铁材料裂纹扩展的近场动力学研究. 船舶力学. 2023(09): 1379-1389 .
    13. 邓永兴,陆晓霞,李磊,徐松林,苗春贺. 颗粒尺寸对微米级铝粉动态响应的影响. 兵器装备工程学报. 2022(05): 172-177+184 .
    14. 吴建营. 固体结构损伤破坏统一相场理论、算法和应用. 力学学报. 2021(02): 301-329 . 本站查看
    15. 吴凡,段庆林. 高精度近场动力学方法:一维键型研究. 计算力学学报. 2021(02): 193-198 .
    16. 王蕉,楚锡华. 冲击载荷下颗粒材料临边界区域的波动行为及变形特征分析. 力学学报. 2021(09): 2395-2403 . 本站查看
    17. 卢广达,陈建兵. 基于一类非局部宏-微观损伤模型的裂纹模拟. 力学学报. 2020(03): 749-762 . 本站查看
    18. 王亚月. 钢砼叉桩动力响应模拟分析探究. 水利规划与设计. 2020(07): 102-108 .
    19. 黄小华,李双,金艳丽,叶兆青. 冲击荷载作用下泊松比对脆性材料破坏影响的近场动力学分析. 振动与冲击. 2020(20): 204-215 .
    20. 沈峰,章青,顾鑫. 弹丸侵彻混凝土靶板破坏过程的近场动力学模拟. 重庆大学学报. 2019(01): 64-69 .
    21. 顾鑫,章青,Erdogan Madenci. 多物理场耦合作用分析的近场动力学理论与方法. 力学进展. 2019(00): 576-598 .
    22. 刘璐,季顺迎. 基于扩展多面体包络函数的快速接触搜索算法. 中国科学:物理学 力学 天文学. 2019(06): 13-27 .
    23. 王涵,黄丹,徐业鹏,刘一鸣. 非常规态型近场动力学热黏塑性模型及其应用. 力学学报. 2018(04): 810-819 . 本站查看
    24. 刘硕,方国东,王兵,付茂青,梁军. 近场动力学与有限元方法耦合求解热传导问题. 力学学报. 2018(02): 339-348 . 本站查看
    25. 周毅聪,赵海涛,陈吉安,陈政,段登平. 单侧涂层浮空器蒙皮材料的近场动力学模型. 复合材料学报. 2018(10): 2897-2905 .
    26. 钱劲松,陈康为,张磊. 粒料固有各向异性的离散元模拟与细观分析. 力学学报. 2018(05): 1041-1050 . 本站查看
    27. 周学君,陈丁,唐轶. 一种新型SPH固壁边界处理的排斥力模型. 长江科学院院报. 2017(07): 54-59 .
    28. 周学君,陈丁,黄文雄. 基于长程力的SPH方法固壁边界处理. 河海大学学报(自然科学版). 2017(02): 153-160 .
    29. 王飞,马玉娥,郭妍宁. 近场动力学中内核参数对非均匀材料热传导数值解的影响研究. 西北工业大学学报. 2017(02): 203-207 .
    30. 章青,郁杨天,顾鑫. 近场动力学与有限元的混合建模方法. 计算力学学报. 2016(04): 441-448+450 .
    31. 刘肃肃,胡祎乐,余音. 基于GPU的近场动力学模拟的并行化方法. 上海交通大学学报. 2016(09): 1362-1367+1375 .

    Other cited types(42)

Catalog

    Article Metrics

    Article views (1898) PDF downloads (1416) Cited by(73)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return