EI、Scopus 收录
中文核心期刊
Ye Xiaoyan, Wang Dengming, Zheng Xiaojing. A MODIFIED NONLOCAL RHEOLOGY MODEL FOR DENSE GRANULAR FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 40-47. DOI: 10.6052/0459-1879-15-287
Citation: Ye Xiaoyan, Wang Dengming, Zheng Xiaojing. A MODIFIED NONLOCAL RHEOLOGY MODEL FOR DENSE GRANULAR FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 40-47. DOI: 10.6052/0459-1879-15-287

A MODIFIED NONLOCAL RHEOLOGY MODEL FOR DENSE GRANULAR FLOW

  • Received Date: July 29, 2015
  • Revised Date: August 04, 2015
  • In dense granular flows, a non-local rheology theory was proposed by Pouliquen et al. based on the idea of a self-activated process, in which a rearrangement at one position will be trigged by stress fluctuation due to rearrangements elsewhere in the material. Taking into account the probability density distribution of stress fluctuation amplitude in granular materials and the coupling e ect between shear rate and volume fraction in iterative calculation, a modified non-local rheological model was proposed in order to describe the dense granular flow more accurately. Due that dense granular flows down inclines preserve this complexity but remain simple enough for detailed analysis, this modified model was applied to predict the rheological characteristics of flows down a rough inclined plane. Compared to the previous non-local rheological model, the predicted results based on the present modified model, including the critical thickness, depth-averaged velocity and shear rate profile, are quantitatively better consistent with the existing experimental and simulating results.
  • 1 Zheng XJ, Wang DM. Multiscale mechanical behaviors in discrete materials: A review. Acta Mechanica Solida Sinica, 2010, 23(6):579-591
    2 Pouliquen O, Chevoir F. Dense flows of dry granular material. C. R. Physique, 2002, 3: 163-175
    3 季顺迎. 非均匀颗粒材料的类固-液相变行为及本构方程. 力学学 报, 2007, 23(2): 223-237 (Ji Shunying. The quasi-solid-liquid phase transition of non-uniform granular materials and their constitutive equation. Chinese Journal of Theoretical and Applied Mechanics,2007, 23(2): 223-237 (in Chinese))
    4 Aranson IS, Tsimring LS. Patterns and collective behavior in granular media: Theoretical concepts. Rev Mod Phys, 2006, 78: 641-692
    5 蒋亦民, 刘佑. 基于流体动力学理论的颗粒物质本构关系. 科学 通报, 2009, 54(11): 1504-1510 (Jiang Yimin, Liu Mario. A granular constitutive relation derived from hydrodynamics. Chinese Sci Bull, 2009, 54(11): 1504-1510 (in Chinese))
    6 季顺迎, 孙其诚, 严颖. 颗粒物质剪切流动的类固-液转化特性及 相变图的建立. 中国科学物理学力学天文学(中文版), 2011,41(9): 1112-1125 (Ji Shunying, Sun Qicheng, Yan Ying. Characteristics in quasi-solid-liquid phase transition of granular shear flow and its phase diagram. Sci. Sin. Phys. Mech. Astron, 2011, 41(9):1112-1125 (in Chinese))
    7 Jaeger HM, Nagel SR, Behringer RP. Granular solids, liquids, and gases. Rev Mod Phys, 1996, 68: 1259-1273
    8 Roux JN, Combes G. Quasistatic rheology and the origin of strain. C R Phys, 2002, 3: 131-140
    9 Goldhirsch I. Rapid granular flows. Annu Rev Fluid Mech, 2003, 35:267-293
    10 Berzi D. Extended kinetic theory applied to dense, granular, simple shear flows. Acta Mech, 2014, 225: 2191-2198
    11 Midi GDR. On dense granular flows. Eur Phys J E, 2004, 14: 341-365
    12 Da Cruz F, Emam S, Prochnow M, et al. Rheophysics of dense granular materials: Discrete simulation of plane shear flows. Phys Rev E, 2005, 72: 021309
    13 Bagnold RG. Experiments of gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc Lond A, 1954,255: 49-63
    14 Jop P, Forterre Y, Pouliquen O. A constitutive law for dense granular flows. Nature, 2006, 441: 727-730
    15 Silbert LE, Landry JW, Grest GS. Granular flow down a rough inclined plane: Transition between thin and thick piles. Phys Fluids,2003, 15: 1-10
    16 Mueth DM, Debregeas GF, Karczmar GS, et al. Signatures of granular microstructure in dense shear flows. Nature, 2000, 406: 385-389
    17 Koval G, Roux JN, Corfdir A, et al. Annular shear of cohesionless granularmaterials: From the inertial to quasistatic regime. Phys Rev E, 2009, 79: 021306
    18 Kamrin K, Koval G. Nonlocal constitutive relation for steady granular flow. Phys Rev Lett, 2012, 108: 178301
    19 Aranson IS, Tsimring LS. Continuum theory of partially fluidized granular flows. Phys Rev E, 2002, 65: 061303
    20 Mohan LS, Rao KK, Nott PR. A frictional cosserat model for the slow shearing of granular materials. J Fluid Mech, 2002, 457: 377-409
    21 Savage SB. Analysis of slow high-concentration flows of granular materials. J Fluid Mech, 1998, 377: 1-26
    22 Jenkins JT, Berzi D. Dense inclined flows of inelastic spheres: Tests of an extension of kinetic theory. Granular Matter, 2010, 12: 151-158
    23 Kamrin K, Bazant MZ. Stochastic flow rule for granular materials. Phys Rev E, 2007, 75: 041301
    24 Jop P. Rheological properties of dense granular flows. C R Physique,2015, 16: 62-72
    25 Bouzid M, Trulsson M, Claudin P, et al. Microrheology to probe non-local e ects in dense granular flows. Eur Phy Lett, 2015, 109:24002
    26 Henann DL, Kamrin K. A predictive, size-dependent continuum model for dense granular flows. Proceedings of the National Academy of Sciences, 2013, 110: 6730
    27 Kamrin K, Henann DL. Nonlocal modeling of granular flows down Inclines. Soft Matter, 2015, 11: 179-185
    28 Pouliquen O, Forterre Y. A non-local rheology for dense granular flows. Philos Transact A Math Phys Eng Sci, 2009, 367: 5091-5107
    29 Pouliquen O, Forterre Y, Le Dizes S. Slow dense granular flows as self-induced process. Adv Complex Syst, 2001, 4: 441-450
    30 Pouliquen O. Scaling laws in granular ows down rough inclined planes. Phys Fluids, 1999, 11: 542-548
    31 Müller MK, Luding S, Pöschel T. Force statistics and correlations in dense granular packings. Chemical Physics, 2010, 375: 600-605
    32 Coppersmith SN, Liu C, Majumdar S, et al. Model for force fluctuations in bead packs. Phys Rev E, 1996, 53 (5): 4673-4685
    33 Liu C, Nagel SR, Schecter DA, et al. Force fluctuations in bead packs. Science, 1995, 269: 513-515
    34 Asmus SMF, Pezzotti G. Analysis of microstresses in cement paste by fluorescence piezospectroscopy. Phys Rev E, 2002, 66: 052301
    35 Haw MD. Volume fraction variations and dilation in colloids and Granular. Phil Trans R Soc A, 2009, 367: 5167-5170
    36 Haw MD. Void structure and cage fluctuations in simulations of concentrated suspensions. Soft Matter, 2006, 2: 950-956
    37 Møller PCF, Rodts S, Michels MAJ, et al. Shear banding and yield stress in soft glassy materials. Phys Rev E, 2008, 77: 041507
    38 Pusey PN, Zaccarelli E, Valeriani C, et al. Hard spheres: crystallization and glass formation. Phil Trans R Soc A, 2009, 367: 4993-5011
    39 Pouliquen O, Cassar C, Jop P, et al. Flow of dense granular material: Towards simple constitutive laws. J Stat Mech, 2006, (07): P07020
    40 Silbert LE, Ertas D, Grest GS, et al. Granular flow down inclined plane: Bagnold scaling and rheology. Phys Rev E, 2001, 64: 051302
  • Related Articles

    [1]Zhou Yongfeng, Li Jie. ANALYTICAL SOLUTIONS OF THE GENERALIZED PROBABILITY DENSITY EVOLUTION EQUATION WITH MULTIDIMENSIONAL RANDOM VARIABLES: THE CASE OF EULER-BERNOULLI BEAM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2659-2668. DOI: 10.6052/0459-1879-24-001
    [2]Chen Jianbing, Lü Mengze. A NEW METHOD FOR THE PROBABILITY DENSITY OF MAXIMUM ABSOLUTE VALUE OF A MARKOV PROCESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1437-1447. DOI: 10.6052/0459-1879-19-104
    [3]Shi Sheng, Du Dongsheng, Wang Shuguang, Li Weiwei. NON-UNIFORM TIME STEP TVD SCHEME FOR PROBABILITY DENSITY EVOLUTION FUNCTION WITH IMPROVEMENT OF INITIAL CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1223-1234. DOI: 10.6052/0459-1879-18-446
    [4]Jiang Zhongming, Li Jie. ANALYTICAL SOLUTIONS OF THE GENERALIZED PROBABILITY DENSITY EVOLUTION EQUATION OF THREE CLASSES STOCHASTIC SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 413-421. DOI: 10.6052/0459-1879-15-221
    [5]Chen Jianbing, Zhang Shenghan. PROBABILITY DENSITY EVOLUTION ANALYSIS OF NONLINEAR RESPONSE OF STRUCTURES WITH NON-UNIFORM RANDOM PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 136-144. DOI: 10.6052/0459-1879-13-174
    [6]The joint probability density function of nonlinear dynamic stochastic response of structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 8-8. DOI: 10.6052/0459-1879-2006-5-2005-430
    [7]Strategy of selecting points via number theoretical method in probability density evolution analysis of stochastic response of structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 127-133. DOI: 10.6052/0459-1879-2006-1-2005-054
    [8]The probability density evolution method for dynamic reliability assessment of nonlinear stochastic structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2). DOI: 10.6052/0459-1879-2004-2-2003-202
    [9]THE PROBABILITY DENSITY FUNCTIONS OF THE STATIONARY RESPONSE OF CERTAIN CLASSES OF NONLINEAR SYSTEMS TO STOCHASTIC EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 92-102. DOI: 10.6052/0459-1879-1991-1-1995-813
    [10]THE DISTRIBUTION OF SOLID PARTICLES SUSPENDED IN A TURBULENT FLOW: A STOCHASTIC APPROACH[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 28-36. DOI: 10.6052/0459-1879-1991-1-1995-806
  • Cited by

    Periodical cited type(3)

    1. 王嗣强,薛一桢,Michael Zhuravkov,季顺迎. 凹形多面体离散单元的水平集函数接触算法. 计算力学学报. 2022(03): 291-298 .
    2. 王嗣强,季顺迎. 考虑等效曲率的超二次曲面单元非线性接触模型. 力学学报. 2018(05): 1081-1092 . 本站查看
    3. 孙越,冯象初,李小平,张瑞. 接触问题的增广拉格朗日块体粘接模型. 西安电子科技大学学报. 2017(04): 34-39 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1084) PDF downloads (935) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return