Citation: | Jiang Zhongming, Li Jie. ANALYTICAL SOLUTIONS OF THE GENERALIZED PROBABILITY DENSITY EVOLUTION EQUATION OF THREE CLASSES STOCHASTIC SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 413-421. DOI: 10.6052/0459-1879-15-221 |
1 李杰,陈建兵. 随机结构非线性动力响应概率密度演化分析. 力学学报, 2003, 35(6):716-722(Li Jie, Chen Jianbin. The probability density evolution method for analysis of dynamic nonlinear response of stochastic structures. Chinese Journal of Theoretical and Applied Mechanic, 2003, 35(6):716-722(in Chinese))
|
2 李杰,陈建兵. 随机系统分析中的广义密度演化方程. 自然科学进展, 2006, 16(6):712-719(Li Jie, Chen Jianbin. Generalized density evolution equation in stochastic dynamical system. Progress in Natural Science, 2006, 16(6):712-719(in Chinese))
|
3 Li J, Chen JB. The principle of preservation of probability and the generalized density evolution equation. Structural Safety, 2008, 30:65-77
|
4 Chen JB, Li J. A note on the principle of preservation of probability and probability density evolution equation. Probability Engineering Mechanics, 2009, 24(1):51-59
|
5 Li J,Chen JB. Stochastic Dynamics of Structures. John Wiley & Sons, 2009
|
6 Li J, Chen JB. The probability density evolution method for dynamic response analysis of non-linear stochastic structures. International Journal for Numerical Methods in Engineering, 2006, 65:882-903
|
7 Li J,Chen JB,Fan WL. The equivalent extreme-value event and evaluation of the structural system reliability. Structural Safety, 2007, 29(2):112-131
|
8 Chen JB,Li J. The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters. Structural Safety, 2007, 29(2):77-93
|
9 Li J,Peng YB,Chen JB. A physical approach to structural stochastic optimal controls. Probabilistic Engineering Mechanics, 2010, 25(1):127-141
|
10 陈建兵,李杰. 随机结构静力反应概率密度演化方程的差分方法. 力学季刊, 2004, 25(1):21-28(Chen Jianbin, Li Jie. Difference method for probability density evolution eqaution of stochastic structural response. Chinese Quarterly of Mechanics, 2004, 25(1):21-28(in Chinese))
|
11 Li J, Chen JB. The number theoretical method in response analysis of nonlinear stochastic structures. Computational Mechanics, 2007, 39(6):693-708
|
12 Farlow SJ. Partial Differential Equations for Scientists and Engineers. Courier Dover Publications, 2012
|
13 刘延柱,陈立群. 非线性振动. 北京:高等敎育出版社, 2001(Liu Yanzhu, Chen Liqun. Nonlinear Vibration. Beijing:Higher Education Press, 2001(in Chinese))
|
14 陈立群,吴哲民. 多自由度非线性振动分析的平均法. 振动与冲击, 2002, 21(3):63-64(Chen Liqun, Wu Zhemin. Study on the precession of vibrating shape for circular cylindrical shell. Journal of Vibration and Shock, 2002, 21(3):63-64(in Chinese))
|
15 李骊. 强非线性振动系统的定性理论与定量方法. 北京:科学出版社, 1997(Li Li. The qualitative theory and quantitative methods of strong nonlinear vibration system. Beijing:Science Press, 1997(in Chinese))
|
16 Nayfeh AH. Perturbation Methods. New York:John Wiley & Sons, 2008
|
17 Ibragimov NH. Classical and new methods, nonlinear mathematical models, symmetry and invariance principles.//A Practical Course in Differential Equations and Mathematical Modelling. World Scientific, 2010
|
18 Olver PJ. Applications of Lie Groups to Differential Equations. Berlin:Springer, 2000
|
19 Ibragimov NH. 微分方程与数学物理问题. 北京:高等教育出版社, 2013(Ibragimov NH. A Practical Course in Differential Equations and Mathematical Modelling. Beijing:Higher Education Press, 2013(in Chinese))
|
20 Van der Pol B. On "relaxation-oscillations". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1926, 2(11):978-992
|
21 Samuelson PA. Generalized predator-prey oscillations in ecological and economic equilibrium.//Proceedings of the National Academy of Sciences, 1971, 68(5):980-983
|
22 Athans M,Dertouzos ML,Spann RN, et al. Systems, Networks, and Computation. New York:McGraw-Hill, 1974
|
23 Guckenheimer J. Dynamics of the van der Pol equation. Circuits and Systems, IEEE Transactions on, 1980, 27(11):983-989
|
24 Gazizov RK,Khalique CM. Approximate transformations for van der Pol-type equations. Mathematical Problems in Engineering, 2006, ID 68753
|
25 卢琳璋. 两类代数黎卡提方程数值解法的研究进展. 厦门大学学报(自然科学版),2001, 40(2):182-186(Lu Linzhang. Study progress of numerical methods for solutions of two classes of algebraic riccati equations. Journal of Xiamen University(Natural Science), 2001, 40(2):182-186(in Chinese))
|
26 Anderson BDO,Moore JB. Linear Optimal Control. New Jersey:Prentice-hall Englewood Cliffs, 1971
|
27 Cantwell B. Introduction to Symmetry Analysis with CD-ROM. Cambridge:Cambridge University Press, 2002
|
28 Adam AA,Mahomed FM. Non-local symmetries of first-order equations. IMA Journal of Applied Mathematics, 1998, 60(2):187-198
|
29 Helmholtz HLF. On the Sensations of Tone as a Physiological Basis for the Theory of Music. Cambridge:Cambridge University Press, 2009
|
30 Kang IS. Dynamics of a conducting drop in a time-periodic electric field. Journal of Fluid Mechanics, 1993, 257:229-264
|
31 Lochner JPA. Utilization of wave motion. U.S. Patent, 1925, 1531:169
|
32 Morel T. Jet-driven Helmholtz fluid oscillator. U.S. Patent, 1977, 4041:984
|
33 Morel T. Experimental study of a jet-driven Helmholtz oscillator. Journal of Fluids Engineering, 1979, 101(3):383-390
|
34 Almendral JA,Sanjuán MAF. Integrability and symmetries for the Helmholtz oscillator with friction. Journal of Physics A:Mathematical and General, 2003, 36(3):695-698
|