Citation: | Zhang Jian, Zhao Guipingy, Lu Tianjian. MULTIAXIAL PHENOMENOLOGICAL COMPRESSIBLE CONSTITUTIVE PARAMETERS FOR CLOSED-CELL ALUMINUM FOAMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 651-663. DOI: 10.6052/0459-1879-15-086 |
Daxner T. Plasticity of Cellular Metals (Foams)/Plasticity of Pressure-Sensitive Materials, Berlin Heidelberg: Springer, 2014: 153-204
|
Shahbeyk S. Yield/Failure Criteria, Constitutive Models, and Crashworthiness Applications of Metal Foams, Metal Foams: Fundamentals and Applications. DEStech Publications, Inc; 1 edition. 2012: 131-217
|
Hallquist JO. LSTC. LS-DYNA user's manual. Livermore Software Technology Corporation, Livermore, CA, US. 2007
|
Reyes A, Hopperstad OS, Berstad T. Constitutive modeling of aluminum foam including fracture and statistical variation of density. European Journal of Mechanics-A/Solids, 2003, 22: 815-835
|
Reyes A, Hopperstad OS, Berstad T, et al. Implementation of a constitutive model for aluminum foam including fracture and statistical variation of density. In: Proc. of 8th International LS-DYNA Users Conference. 2004;Material Technology:11-24
|
Reyes A, Hopperstad OS, Hanssen AG, et al. Modeling of material failure in foam-based components. International Journal of Impact Engineering, 2004, 30: 805-834
|
Hanssen AG, Hopperstad OS, Langseth M, et al. Validation of constitutive models applicable to aluminium foams. International Journal of Mechanical Sciences, 2002, 44: 359-406
|
ABAQUS User's Manual. Hibbitt, Karlsson & Sorensen, Inc 2005
|
Deshpande VS, Fleck NA. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 2000, 48: 1253-1283
|
Miller RE. A continuum plasticity model for the constitutive and indentation behaviour of foamed metals. International Journal of Mechanical Sciences, 2000, 42: 729-754
|
Chen C, Lu TJ. A phenomenological framework of constitutive modelling for incompressible and compressible elasto-plastic solids. International Journal of Solids and Structures, 2000, 37: 7769-7786
|
Zhang J, Kikuchi N, Li V, et al. Constitutive modeling of polymeric foam material subjected to dynamic crash loading. International Journal of Impact Engineering, 1998, 21: 369-386
|
Zhang J, Lin Z, Wong A, et al. Constitutive modeling and material characterization of polymeric foams. Journal of Engineering Materials and Technology-Transactions of the Asme , 1997, 119: 284-291
|
Forest S, Blazy JS, Chastel Y, et al. Continuum modeling of strain localization phenomena in metallic foams. Journal of Materials Science, 2005, 40: 5903-5910
|
Combaz E, Bacciarini C, Charvet R, et al. Yield surface of polyurethane and aluminium replicated foam. Acta Materialia , 2010, 58: 5168-5183
|
Combaz E, Bacciarini C, Charvet R, et al. Multiaxial yield behaviour of Al replicated foam. Journal of the Mechanics and Physics of Solids, 2011, 59: 1777-1793
|
Andrews E, Sanders W, Gibson LJ. Compressive and tensile behaviour of aluminum foams. Materials Science and Engineering A, 1999, 270: 113-124
|
Gioux G, McCormack TM, Gibson LJ. Failure of aluminum foams under multiaxial loads. International Journal of Mechanical Sciences, 2000, 42: 1097-1117
|
Doyoyo M, Wierzbicki T. Experimental studies on the yield behavior of ductile and brittle aluminum foams. International Journal of Plasticity, 2003, 19: 1195-1214
|
Ruan D, Lu G, Ong LS, et al. Triaxial compression of aluminium foams. Composites Science and Technology, 2007, 67: 1218-1234
|
Blazy JS, Marie-Louise A, Forest S, et al. Deformation and fracture of aluminium foams under proportional and non proportional multi-axial loading: statistical analysis and size effect. International Journal of Mechanical Sciences, 2004, 46: 217-244
|
McCullough KYG, Fleck NA, Ashby MF. Uniaxial stress-strain behaviour of aluminium alloy foams. Acta Materialia , 1999, 47: 2323-2330
|
Sridhar I, Fleck NA. The multiaxial yield behaviour of an aluminium alloy foam. Journal of Materials Science, 2005, 40: 4005-4008
|
Peroni L, Avalle M, Peroni M. The mechanical behaviour of aluminium foam structures in different loading conditions. International Journal of Impact Engineering, 2008, 35: 644-658
|
Avalle M, Lehmhus D, Peroni L, et al. AlSi7 metallic foams - aspects of material modelling for crash analysis. International Journal of Crashworthiness, 2009, 14: 269-285
|
Lu TJ, Ong JM. Characterization of close-celled cellular aluminum alloys. Journal of Materials Science, 2001, 36: 2773-2786
|
冯勃. 多孔材料静水压多轴加载实验系统及其在泡沫铝多轴力学行为研究中的应用. [博士论文]. 西安: 西安交通大学, 2010 (Feng Bo. Hydrostatic multiaxial loading experiment system for porous materials and study on multiaxial mechanical behavior aluminum for aluminum foams. [PhD Thesis]. Xi'an: Xi'an Jiaotong University, 2010 (in Chinese))
|
Zhou ZW, Wang ZH, Zhao LM, et al. Uniaxial and biaxial failure behaviors of aluminium alloy foams. Composites Part B: Engineering, 2014, 61: 340-349
|
Zhou ZW, Wang ZH, Zhao LM. Loading rate effect on yield surface of aluminum alloy foams. Materials Science and Engineering A, 2012, 543: 193-199
|
王二恒, 虞吉林, 王飞等. 泡沫铝材料准静态本构关系的理论和实验研究. 力学学报, 2004, 36(6): 673-679 (Wang Erheng, Yu Jilin, Wang Fei, et al. A theoretical and experimental study on the quasi-static constitutive model of aluminum foams. Acta Mechanica Sinica, 2004, 36(6): 673-679 (in Chinese))
|
Lachambre J, Maire E, Adrien J, et al. In situ observation of syntactic foams under hydrostatic pressure using X-ray tomography. Acta Materialia, 2013, 61: 4035-4043
|
Jin MZ, Chen CQ, Lu TJ. The mechanical behavior of porous metal fiber sintered sheets. Journal of the Mechanics and Physics of Solids, 2013, 61: 161-174
|
Alkhader M, Vural M. A plasticity model for pressure-dependent anisotropic cellular solids. International Journal of Plasticity, 2010, 26: 1591-1605
|
Alkhader M, Vural M. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. Journal of the Mechanics and Physics of Solids, 2009, 57: 871-890
|
Alvarez P, Mendizabal A, Petite MM, et al. Finite element modelling of compressive mechanical behaviour of high and low density polymeric foams. Materialwissenschaft und Werkstofftechnik, 2009, 40: 126-132
|
Yang CH, An Y, Tort M, et al. Fabrication, modelling and evaluation of microstructured materials in a digital framework. Computational Materials Science, 2014, 81: 89-97
|
De Giorgi M, Carofalo A, Dattoma V, et al. Aluminium foams structural modelling Finite element analysis of closed-cell aluminium foam under quasi-static loading. Computers and Structures, 2010, 88: 5-35
|
Roberts AP, Garboczi EJ. Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Materialia, 2001, 49: 189-197
|
Song YZ, Wang ZH, Zhao LM, et al. Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model. Materials and Design, 2010, 31: 4281-4289
|
Zheng ZJ, Liu YD, Yu JL, et al. Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes. International Journal of Impact Engineering, 2012, 42: 66-79
|
Liao SF, Zheng ZJ, Yu JL. Dynamic crushing of 2D cellular structures: Local strain field and shock wave velocity. International Journal of Impact Engineering, 2013, 57: 7-16
|
Yang B, Tang LQ, Liu YP, et al. Localized deformation in aluminium foam during middle speed Hopkinson bar impact tests. Materials Science and Engineering A, 2013, 560: 734-743
|
Zheng ZJ, Yu JL, Wang CF, et al. Dynamic crushing of cellular materials: A unified framework of plastic shock wave models. International Journal of Impact Engineering, 2013, 53: 29-43
|
Wicklein M, Thoma K. Numerical investigations of the elastic and plastic behaviour of an open-cell aluminium foam. Materials Science and Engineering A, 2005, 397: 391-399
|
Zhu XL, Ai SG, Lu XF, et al. Collapse models of aluminum foam sandwiches under static three-point bending based on 3D geometrical reconstruction. Computational Materials Science, 2014, 35: 38-45
|
Huang M, Li YM. X-ray tomography image-based reconstruction of microstructural finite element mesh models for heterogeneous materials. Computational Materials Science, 2013, 67: 63-72
|
Jeon I, Katou K, Sonoda T, et al. Cell wall mechanical properties of closed-cell Al foam. Mechanics of Materials, 2009, 41: 60-73
|
Jeon I, Asahina T, Kang K-J, et al. Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography. Mechanics of Materials, 2010, 42: 227-236
|
张健. 泡沫金属的本构关系及吸能特性. [博士论文]. 西安:西安交通大学, 2013 (Zhang Jian, Constitutive modeland energy absorption capacity of metallic cellular materials. [PhD Thesis]. Xi'an: Xi'an Jiaotong University, 2013 (in Chinese))
|
Zhang J, Zhao GP, Lu TJ, et al. Strain rate behavior of closed-cell Al-Si-Ti foams: experiment and numerical modeling. Mechanics of Advanced Materials and Structures, 2015, 22(7): 556-563
|
Campana F, Pilone D. Effect of wall microstructure and morphometric parameters on the crush behaviour of Al alloy foams. Materials Science and Engineering A, 2008, 479: 58-64
|
Hasan MA, Kim A, Lee HJ. Measuring the cell wall mechanical properties of Al-alloy foams using the nanoindentation method. Composite Structures, 2008, 83: 180-188
|
Kim A, Tunvir K, Jeong GD, et al. A multi-cell FE-model for compressive behaviour analysis of heterogeneous Al-alloy foam. Modelling and Simulation in Materials Science and Engineering, 2006, 14: 933-945
|
Kim A, Tunvir K. Study of Al-alloy foam compressive behavior based on instrumented sharp indentation technology. Journal of Mechanical Science and Technology, 2006, 20: 819-827
|
Ně?ek J, Kralik V, Vondrejc J. A two-scale micromechanical model for aluminium foam based on results from nanoindentation. Computers & Structures, 2013, 128: 136-145
|
Jeon I, Asahina T. The effect of structural defects on the compressive behavior of closed-cell Al foam. Acta Materialia , 2005, 53: 3415-3423
|
Hall IW, Guden M, Yu CJ, Crushing of aluminum closed cell foams: Density and strain rate effects. Scripta Materialia, 2000, 43: 515-521
|
Li QM, Magkiriadies I, Harrigan JJ. Compressive strain at the onset of densification of cellular solids. Journal of Cellular Plastics, 2006, 42: 371-392
|
[1] | Zhang Yongchao, Mi Changwen, Gou Xiaofan. FINITE ELEMENT ANALYSIS OF MECHANICAL PROPERTIES OF THREE-DIMENSIONAL NANOPOROUS METALS BASED ON SURFACE EFFECTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2554-2565. DOI: 10.6052/0459-1879-23-155 |
[2] | Ye Xiangping, Liu Cangli, Cai Lingcang, Hu Changming, Yu Yuying, Hu Ling. A MODEL OF NEUTRON IRRADIATION EMBRITTLEMENT FOR METALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1538-1544. DOI: 10.6052/0459-1879-19-025 |
[3] | Zhang Zhijie, Cai Lixun, Chen Hui, Bao Chen, Liu Xiaokun. SPHERICAL INDENTATION METHOD TO DETERMINE STRESS-STRAIN RELATIONS AND TENSILE STRENGTH OF METALLIC MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 159-169. DOI: 10.6052/0459-1879-18-200 |
[4] | Zhou Han, Wu Jiuhui, Hu Zhiping. SOUND ABSORBING PROPERTY OF POROUS METAL MATERIAL AT HIGH TEMPERATURE AND HIGH SOUND PRESSURE LEVEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 229-235. DOI: 10.6052/0459-1879-12-161 |
[5] | Wang Pengfei, Xu Songlin, Zheng Hang, Hu Shisheng. INFLUENCE OF DEFORMATION MODES ON SHPB EXPERIMENTAL RESULTS OF CELLULAR METAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 928-932. DOI: 10.6052/0459-1879-11-354 |
[6] | Numerical study on porous materials under shock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1138-1148. DOI: 10.6052/0459-1879-2010-6-lxxb2009-464 |
[7] | Guiping Zhao, Tianjian Lu. Dynamic response of cellular metallic sandwich plates under impact loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 194-206. DOI: 10.6052/0459-1879-2008-2-2007-129 |
[8] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
[9] | Integrated design of porous materials and structures with scale-coupled effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 522-529. DOI: 10.6052/0459-1879-2006-4-2005-209 |
[10] | Interaction effect in energy absorption of porous material filled thin-walled structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 697-703. DOI: 10.6052/0459-1879-2005-6-2004-255 |