EI、Scopus 收录
中文核心期刊
Xu Yingqiang, Sun Jian, Li Wanzhong, Zhang Yichi, Chen Yaya. SHAKEDOWN ANALYSIS OF THERMAL BARRIER COATINGS BASED ON CYLINDER MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 779-788. DOI: 10.6052/0459-1879-15-073
Citation: Xu Yingqiang, Sun Jian, Li Wanzhong, Zhang Yichi, Chen Yaya. SHAKEDOWN ANALYSIS OF THERMAL BARRIER COATINGS BASED ON CYLINDER MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 779-788. DOI: 10.6052/0459-1879-15-073

SHAKEDOWN ANALYSIS OF THERMAL BARRIER COATINGS BASED ON CYLINDER MODEL

Funds: The project was supported by the National Natural Science Foundation of China (11072196,5875214,10672134) and the Natural Science Basic Research Plan in Shaanxi Province of China (2015JM1009).
  • Received Date: March 04, 2015
  • Revised Date: July 22, 2015
  • Due to thermal expansion misfit and temperature dependent material parameters among layers of thermal barrier coatings (TBCs), the interfacial stress-strain fields become more complicated under thermal loading, which affecting the TBCs stability and spalling failure directly. In this study, the convex and concave microscopic structure around TBCs interface is simplified as multi-cylinder model, with the classic shakedown theorem, Tresca yield criterion and incremental failure criterion, an analytical method of TBCs shakedown analysis is established, in addition, avoiding the time integral and mathematical programming. The variation between material yield strength and temperature is simplified as bilinear relationship, and the stability of typical TBCs is analyzed by using the method of compensation transformation to simplify the solving process. The results show that the stability limit can be obtained facility by using the analytical model of shakedown analysis based on the cylinder model. Stability limit of TBCs was significantly higher than the elastic limit, and the regional stability limit in convex area is higher than concave area around the interface, which indicates that failure prior to occur in concave area. The larger the radius of curvature of the substrate and the thickness of TBCs, the higher the stability limit, and those analysis results are consistent with the experimental results. The shakedown analysis method of TBCs built in this study has a great significant influence on the further research on stability of TBCs considering the creep.
  • 朱建国, 谢惠民, 刘占伟. 热障涂层力学性能的试验测试方法研究进展. 力学学报,2013,45:45-60 (Zhu Jianguo,Xie Huimin, Liu Zhanwei. Research progress on the experimental measurement methods of mechanical properties of thermal barrier coatings. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45:45-60(in Chinese))
    周益春, 刘奇星, 杨丽 等. 热障涂层的破坏机理与寿命预测. 固体力学学报, 2010, 31: 504-531 (Zhou Yichun, Liu Qixing, Yang Li, et al. Failure mechanisms and life prediction of thermal barrier coatings. Chinese Journal of Solid Mechanics, 2010, 31: 504-531 (in Chinese))
    胡浩炬, 张建宇, 杨晓光等.等离子热障涂层失效机理的数值分析研究.航空动力学报, 2010, 25: 1085-1091 (Hu Haoju, Zhang Jianyu, Yang Xiaoguang, et al. Numerical study of failure mechanisms on plasma sprayed thermal barrier coatings. Jourmal of Aerospace Power, 2010, 25: 1085-1091 (in Chinese))
    Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296: 280-284
    He MY, Hutchinson JW, Evans AG. Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling. Materials Science and Engineering A, 2003, 345: 172-178
    Karlsson AM, Hutchinson JW, Evans AG. A fundamental model of cyclic instabilities in thermal barrier systems. Journal of the Mechanics and Physics of Solids, 2002, 50: 1565-1589
    Evans HE. Oxidation failure of TBC systems: An assessment of mechanisms. Surface & Coatings Technology, 2011, 206: 1512-1521
    Kyaw S, Jones A, Hyde T. Predicting failure within TBC system: Finite element simulation of stress within TBC system as affected by sintering of APS TBC, geometry of substrate and creep of TGO. Engineering Failure Analysis, 2013, 27: 150-164
    郑小涛, 程诗, 冯磊等. 循环移动热载荷下压力管道弯头的安定性. 压力容器, 2013, 30: 67-70 (Zheng Xiaotao, Cheng Shi, Feng Lei, et al. Shakedown analysis of the pressure piping bend under cycle moving thermal loadings. Pressure Vessel Technology, 2013, 30: 67-70 (in Chinese))
    郑小涛, 彭常飞, 喻九阳 等. 热-机械载荷下U形对焊接头的安定性. 焊接学报, 2013, 34: 39-42 (Zheng Xiaotao,Peng Changfei,Yu Jiuyang,et al. Shakedown analysis of U-groove butt welded joints under cyclic thermo-mechanical loadings. Transactions of the China Welding Institution, 2013, 34: 39-42 (in Chinese))
    Gokhfeld DA, Cherniavsky DF. Limit Analysis of Structures at Thermal Cycling. Alphen An der Rijn: Sijthoff & Noordhoff, 1980
    Xue MD, Wang XF, Williams FW, et al. Lower-bound shakedown analysis of axisymmetric structures subjected to variable mechanical and thermal loads. International Journal of Mechanical Sciences, 1997, 39(9): 965-976
    Chen HF. Lower and upper bound shakedown analysis of structures with temperature dependent yield stress. Journal of Pressure Vessel Technology, 2010, 132: 1-8
    刘信声, 冯西桥. 考虑温度对材料性能影响时厚壁圆筒的安定分析. 工程力学, 1991, 8(3): 36-44 (Liu Xinsheng, Feng Xiqiao. Shakedown analysis of a thick-walled cylindrical tube considering the material property changing with temperature. Engineering Mechanics, 1991, 8(3): 36-44 (in Chinese))
    杜森田, 徐秉业. 考虑外载荷和温度的运动安定定理. 固体力学学报, 1990, 11(2): 140-147 (Du Sentian, Xu Bingye. A kinematic shakedown theory considering external loading and temperature variation. Acta Mechanica Solida Sinica, 1990, 11(2): 140-147 (in Chinese))
    杜森田, 刘寒冰, 陈塑寰 等. 弹塑性结构在外载和温度作用下的安定分析. 应用数学和力学, 1995, 16(8): 737-744 (Du Sentian, Liu Hanbing, Chen Suhuan, et al. Shakedown analysis of elasto-plastic structures subjected to external loading and temperature variation. Applied Mathematics and Mechanics, 1995, 16(8): 737-744 (in Chinese))
    Karlsson AM, Hutchinson JW, Evans AG. A fundamental model of cyclic instabilities in thermal barrier systems. Journal of the Mechanics and Physics of Solids, 2002, 50: 1565-1589
    Evans HE. Oxidation failure of TBC systems: An assessment of mechanisms. Surface & Coatings Technology, 2011, 206: 1512-1521
    Mumm DR, Evans AG, Spitsberg IT. Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system. Acta Materialia, 2001, 49: 2329-2340
    Karlsson AM, Evans AG. A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems. Acta Materialia, 2001, 49: 1793-1804
    Hille TS, Turteltaub S, Suiker ASJ. Oxide growth and damage evolution in thermal barrier coatings. Engineering Fracture Mechanics, 2011, 78: 2139-2152
    He MY, Evans AG, Hutchinson JW. The ratcheting of compressed thermally grown thin films on ductile substrates. Acta Materialia, 2000, 48: 2593-2601
    徐颖强, 李世杰, 杨小辉 等. 热循环下热障涂层结构不稳定性的数值模拟. 机械设计与制造, 2009, 5: 115-117 (Xu Yingqiang, Li Shijie, Yang Xiaohui, et al. Numerical simulation of structural instability in thermal barrier system during thermal cycling. Machinery Design & Manufacture, 2009, 5: 115-117 (in Chinese))
    黄霞, 丁军, 周静 等. 热障涂层界面位移非稳定性的有限元模拟. 表面技术, 2011, 40: 97-100 (Huang Xia, Ding Jun, Zhou Jing, et al. Numerical simulation of interfacial displacement instability in TBC system. Surface Technology, 2011, 40: 97-100 (in Chinese))
    Aktaa J, Sfar K, Munz D. Assessment of TBC systems failure mechanisms using a fracture mechanics approach. Acta Materialia, 2005, 53: 4399-4413
    Rösler J, Bäker M, Aufzug K. A parametric study of the stress state of thermal barrier coatings Part I: creep relaxation. Acta Materialia, 2004, 52: 4809-4817
    Mao WG, Zhou YC, Yang L, et al. Modeling of residual stresses variation with thermal cycling in thermal barrier coatings. Mechanics of Materials, 2006, 38: 1118-1127
    Zhou CG, Wang N, Xu HB. Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings. Materials Science and Engineering A, 2007, 452: 569-574
    陈良玉, 李玉, 姜华. 多层组合圆筒体的轴对称温度和热应力的通用计算方法. 材料与冶金学报, 2007, 6: 297-315 (Chen Liangyu, Li Yu, Jiang Hua. General computation method for axisymmetric temperature and thermal stress of multilayer cylinder. Journal of Materials and Metallurgy, 2007, 6: 297-315 (in Chinese))
    Ranjbar-Far M, Absi J, Mariaux G, et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method. Materials and Design, 2010, 31: 772-781
    Bialas M. Finite element analysis of stress distribution in thermal barrier coatings. Surface & Coatings Technology, 2008, 202: 6002-6010
  • Related Articles

    [1]Shenshen Chen, Yinghua Liu, Zhangzhi Cen. meshless local Petrov-Galerkin method for static shakedown analysis of elasto-plastic structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 713-721. DOI: 10.6052/0459-1879-2009-5-2008-342
    [2]Tieqiao Tang, Haijun Huang, S.C. Wong, Rui Jiang. Lane changing analysis for two-lane traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 49-54. DOI: 10.6052/0459-1879-2007-1-2006-282
    [4]A GENERALIZED INTERLAYER MODEL FOR INTERFACE FRACTURE ANALYSIS BETWEEN BIMATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 486-490. DOI: 10.6052/0459-1879-1997-4-1995-256
    [5]STUDY ON SHAKEDOWN OF STRUCTURES UNDER DIFFERENT STRAIN-HARDENING MODELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(6): 719-727. DOI: 10.6052/0459-1879-1994-6-1995-601
    [6]SHAKEDOWN ANALYSIS OF KINEMATIC-HARDENING STRUCTRURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(4): 500-503. DOI: 10.6052/0459-1879-1992-4-1995-767
    [7]AN ANALYSIS OF THE SHAKEDOWN PROBLEM OF ELASTO- PLASTIC STRUCTURES UNDER QUASI-STATIC LOADING BY THE PERTURBATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(6): 743-749. DOI: 10.6052/0459-1879-1991-6-1995-900
    [8]样条积分方程法分析弹塑性板弯曲[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 241-245. DOI: 10.6052/0459-1879-1990-2-1995-940

Catalog

    Article Metrics

    Article views (977) PDF downloads (610) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return