EI、Scopus 收录
中文核心期刊
Jiang Chao, Deng Qun, Li Bochuan. A NEW MULTIAXIAL FATIGUE LIFE PREDICTION MODEL BASED ON THE NONPROPORTIONAL ADDITIONAL DAMAGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 634-641. DOI: 10.6052/0459-1879-15-050
Citation: Jiang Chao, Deng Qun, Li Bochuan. A NEW MULTIAXIAL FATIGUE LIFE PREDICTION MODEL BASED ON THE NONPROPORTIONAL ADDITIONAL DAMAGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 634-641. DOI: 10.6052/0459-1879-15-050

A NEW MULTIAXIAL FATIGUE LIFE PREDICTION MODEL BASED ON THE NONPROPORTIONAL ADDITIONAL DAMAGE

Funds: The project was supported by the National Natural Science Foundation of China (11172096), the National Natural Science Foundation for Excellent Young Scholars (51222502), and the Funds for Distinguished Young Scientists of Hunan Province (14JJ1016).
  • Received Date: February 08, 2015
  • Revised Date: May 18, 2015
  • Based on the critical plane approach, this paper proposed a multiaxial low cycle fatigue life prediction model to correctly account for the non-proportional fatigue life reduction. Different from traditional critical plane models, in which only consider the effect of non-proportional additional cyclic hardening, the new model takes into account the influence of loading paths on fatigue life by introducing a non-proportional additional damage coefficient into the fatigue damage parameter. By taking the maximum shear strain plane and the maximum damage plane as the critical plane respectively, this model can also reflect the importance of the selected critical plane on the predicted life. Demonstrated by using the experiment data of eight kinds of materials from different published references, this new model is capable for application under both proportional and non-proportional loading conditions, which is very convenient for engineering application.
  • Brown MW, Miller KJ. A theory for fatigue failure under multiaxial stress-strain conditions. Proc Inst Mech Engng , 1973, 187: 745-755
    Kandil FA, Brown MW, Miller KJ. Biaxial low cycle fatigue fracture of 316 stainless steel at elevated temperatures. The Metal Society, 1982, London, 280: 203-210
    Fatemi A, Socie DF. A critical plane approach to multiaxial fatigue damage including out of plane loading. Fatigue Fract Engng Mater Struct, 1988, 14: 149-165
    Wang CH, Brown MW. A path-independent parameter for fatigue under proportional and non-proportional loading. Fatigue Fract Engng Mater Struct, 1993, 16(12): 1285-1298
    尚德广, 姚卫星. 基于临界面法的多轴疲劳损伤参量的研究. 航空学报, 1999, 20(4): 295-298 (Shang Deguang, Yao Weixing. Study on multiaxial fatigue damage parameters based on the critical plane approach. Acta Aeronautica et Astronautica Sinica, 1999, 20(4): 295-298 (in Chinese))
    陈旭, 许爽燕. 多轴低周疲劳研究现状. 压力容器, 1997, 14(3): 58-61 (Chen Xu, Xu Shuangyan. Recent developments of multiaxial low cycle fatigue failure prediction. Pressure Vessel, 1997, 14(3): 58-61 (in Chinese))
    李静, 孙强, 李春旺等. 一种新的多轴疲劳寿命预测方法. 机械工程学报, 2009, 45(9): 285-290 (Li Jing, Sun Qiang, Li Chunwang, et al. New prediction method for multiaxial fatigue life. Journal of Mechanical Engineering, 2009, 45(9): 285-290 (in Chinese))
    姜潮, 李博川, 韩旭. 一种考虑路径影响的剪切式多轴疲劳寿命模型.机械工程学报, 2014, 50(16): 21-26 (Jiang Chao, Li Bochuan, Han Xu. A new multiaxial fatigue life prediction model with shear form based on the strain path. Journal of Mechanical Engineering, 2014, 50(16): 21-26 (in Chinese))
    Kanazawa K, Miller KJ, Brown M. Low cycle fatigue under out-of-phase loading conditions. Journal of Engineering Materials and Technology, 1977, 99(3): 222-228
    Shamsaei N, Fatemi A. Effect of microstructure and hardness on non-proportional cyclic hardening coefficient and predictions. Materials Science and Engineering A, 2010, 527(12): 3015-3024
    何国求, 陈成澍, 高庆等. 不锈钢多轴非比例加载低周疲劳的研究. 机械工程学报, 1999, 1: 47-50 (He Guoqiu, Chen Chengshu, Gao Qin, et al. Nonproportional loading of 316L stainless steel. Journal of Mechanical Engineering, 1999, 1: 47-50 (in Chinese))
    Itoh T, Nakata T, Sakane M, et al. Nonproportional low cycle fatigue of 6061 aluminum alloy under 14 strain paths. European Structural Integrity Society, 1999, 25: 41-54
    Ellyin F, Xia Z. A rate-independent constitutive model for transient non-proportional loading. Journal of the Mechanics and Physics of Solids , 1989, 37(1): 71-91
    Borodii MV, Shukaev SM. Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and lifetime. International Journal of Fatigue, 2007, 29(6): 1184-1191
    陈志超. 多轴非比例载荷下金属材料的疲劳寿命预测. [硕士论文]. 南京: 南京航空航天大学, 2011 (Chen Zhichao. Fatigue life prediction of metal under multiaxial nonproportional loading. [MS Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese))
    Wang YY, Yao WX. A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading. International Journal of Fatigue, 2005, 28(4): 401-408
    Li J, Zhang ZP, Sun Q, et al. Multiaxial fatigue life prediction for various metallic materials based on the critical plane approach. International Journal of Fatigue, 2011, 33(2): 90-101
    Jiang Y, Hertel O, Vormwald M. An experimental evaluation of three critical plane multiaxial fatigue criteria. International Journal of Fatigue, 2007, 29: 1490-1502
    Shang DG, Sun GQ, Deng J, et al. Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach. International Journal of Fatigue, 2007, 29: 2200-2207
    Nitta A, Gata GO, Kuwabara KK. Fracture mechanism and life assessment under high-strain biaxial cyclic loading of type 304 stainless steel. Fatigue Fract Eng Mater Struct, 1989, 12: 77-92
    Nitta A, Ogata T, Kuwabara KK. The effect of axial-torsional straining phase on elevated-temperature biaxial low-cycle fatigue life in SUS 304 stainless steel. J SOC Mater Sci Japan, 1987, 36: 376-382 (in Japanese)
    Gao Z, Zhao T, Wang X, et al. Multiaxial fatigue of 16MnR steel. J Pressure Vessel Technol, 2009, 131: 021403-1
    Nelson DV, Rostami A. Biaxial fatigue of A533B pressure vessel steel. ASME J Press Vessels Technol, 1997, 119: 325-331
    Kalluri S, Bonacuse PJ. In-phase and out-of-phase axial-torsional fatigue behavior of Haynes 188 at 760C. NASA TM-105765. National Aeronautics and Space Administration, San Diego, 1991, 1-20
    Kim KS, Park JC, Lee JW. Multiaxial fatigue under variable amplitude loads. ASEM J Eng Mater Technol, 1999, 121(3): 286-293
    Park JH, Song JH. New estimation method of fatigue properties of aluminum alloys. J Eng Mater Technol, 2003, 125: 208-214
  • Related Articles

    [1]Li Wenqi, Xiang Zhong, Li Haoran, Ren Zhongkai, Wang Jiadong. STUDY ON THE PREDICTION MODEL OF THE INTRINSIC DAMAGE DISSIPATION LIFE OF TWO-STAGE VARIABLE AMPLITUDE STRAIN FATIGUE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 149-156. DOI: 10.6052/0459-1879-23-314
    [2]Xiangyang Cui, Kecheng Hong. A MULTIAXIAL LOW-CYCLE FATIGUE MODEL CONSIDERING NON-PROPORTIONAL ADDITIONAL DAMAGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 863-872. DOI: 10.6052/0459-1879-18-347
    [3]Zhao Ernian, Qu Weilian. A NEW PROPOSAL FOR MULTIAXIAL LOW-CYCLE FATIGUE LIFE PREDICTION UNDER NON-PROPORTIONAL LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 944-952. DOI: 10.6052/0459-1879-15-377
    [4]Guo Hongbao, Wang Bo, Jia Purong, Yang Chengpeng. MESOSCOPIC DAMAGE BEHAVIORS OF PLAINWOVEN CERAMIC COMPOSITE UNDER IN-PLANE SHEAR LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 361-368. DOI: 10.6052/0459-1879-15-133
    [5]Ding Zhiping, Chen Jiping, Wang Tengfei, Zhao Ping. STUDY ON LOW CYCLE FATIGUE OF SINGLE CRYSTAL NI-BASED SUPERALLOY UNDER MULTIAXIAL NON-PROPORTIONAL LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 326-333. DOI: 10.6052/0459-1879-2012-2-20120216
    [6]Dongting Wang J.-Z. Hong Tanhui Wu. Additional contact constraint method in impact stage of planar flexible multi-body dynamics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1157-1161. DOI: 10.6052/0459-1879-2011-6-lxxb2011-016
    [7]A STUDY ON THE ELASTO-PLASTIC MECHANICAL BEHAVIOR OF TWO PHASE MEDIA UNDER NONPROPORTIONAL LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(2): 185-192. DOI: 10.6052/0459-1879-1999-2-1995-021
    [8]CONSTITUTIVE MODELING OF ANISOTHERMAL NONPROPORTIONAL CYCLIC VISCOPLASTICITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(2): 251-256. DOI: 10.6052/0459-1879-1996-2-1995-328
    [9]A MICROMECHANICS CONSTITUTIVE MODEL FOR FORWARD TRANSFORMATION PLASTICITY WITH SHEAR AND DILATATION EFFECT: Ⅰ, GENERALIZED NONPROPORTIONAL LOADING HISTORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 299-308. DOI: 10.6052/0459-1879-1991-3-1995-841
    [10]THE UNIFICATION OF DAMAGE WITH FRACTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 123-128. DOI: 10.6052/0459-1879-1991-1-1995-818

Catalog

    Article Metrics

    Article views (1353) PDF downloads (968) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return