EI、Scopus 收录
中文核心期刊
Jiang Huan, Duan Li, Kang Qi. STUDY ON TRANSITION TO CHAOS OF THERMOCAPILLARY CONVECTIONIN A RECTANGULAR LIQUID POOL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 422-429. DOI: 10.6052/0459-1879-14-296
Citation: Jiang Huan, Duan Li, Kang Qi. STUDY ON TRANSITION TO CHAOS OF THERMOCAPILLARY CONVECTIONIN A RECTANGULAR LIQUID POOL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 422-429. DOI: 10.6052/0459-1879-14-296

STUDY ON TRANSITION TO CHAOS OF THERMOCAPILLARY CONVECTIONIN A RECTANGULAR LIQUID POOL

Funds: The project was supported by the National Natural Science Foundation of China (11032011, 11372328), Cooperative Research Project between China and Russia and the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences (XDA04020405).
  • Received Date: September 25, 2014
  • Revised Date: December 08, 2014
  • This paper mainly does the experimental research about transition to chaos of thermocapillary convection in the rectangular pool. In the experiment, we observed that the transition process of thermocapillary convection in the rectangular pool has different phases of steady, regular oscillation and irregular oscillation. For different Prandtl numbers of silicone oil in different aspect ratios, there are different transition routes to chaos. When Prandtl number of silicone oil is less than or equal to 16 (1cSt) or Prandtl number equal to 25 (1.5cSt) with aspect ratios of 26, thermocapillary convection transition follows quasi-periodic bifurcation routes to chaos as the temperature increases. But when silicone oil of Prandtl number is greater than or equal to 25, it mainly follows period-doubling bifurcation routes to chaos. Sometimes two types of bifurcation would be accompanied by emergence of tangent bifurcation. In the experiment, we observed the distribution of the temperature field of liquid surface by using thermal imaging cameras, and found some phenomena of the surface fluctuation and convective cell oscillation.
  • 胡文瑞, 徐硕昌. 微重力流体力学. 北京: 科学出版社, 1999. 95-104 (Hu Wenrui, Xu Shuochang. Microgravity Fluid Mechanics. Beijing: Science Press, 1999. 95-104 (in Chinese))
    胡文瑞, 等. 微重力科学概论. 北京: 科学出版社, 2010. 78-86 (Hu Wenrui, et al. An Introduction to Microgravity Science. Beijing: Science Press, 2010. 78-86 (in Chinese))
    Gollub JP, Benson SV. Many routes to turbulent convection. Journal of Fluid Mechanics, 1980, 100(3): 449-470
    Mukutmoni D, Yang KT. Thermal-convection in small enclosures-an atypical bifurcation sequence. International Journal of Heat and Mass Transfer, 1995, 38(1): 113-126
    Stella F, Bucchignani E. Rayleigh-Benard convection in limited domains: Part 1-Oscillatory flow. Numerical Heat Transfer Part A-Applications, 1999, 36(1): 1-16
    Bucchignani E, Stella F. Rayleigh-Benard convection in limited domains: Part 2 -Transition to chaos. Numerical Heat Transfer Part A-Applications, 1999, 36(1): 17-34
    Bucchignani E, Mansutti D. Horizontal thermal convection in a shallow cavity:oscillatory regimes and transition to chaos. International Journal of Numerical Methods for Heat & Flow, 2000, 10(2): 179-195
    Bucchignani E, Mansutti D. Horizontal thermocapillary convection of succinonitrile: steady state, instabilities, and transition to chaos. Physical Review E, 2004, 69(5): 056319
    胡文瑞, 唐泽眉, 李凯. 浮区热毛细对流. 力学进展, 2009, 39(3): 360-377 (Hu Wenrui, Tang Zemei, Li Ka. Floating zone thermocapillary convection. Advances in Mechanics, 2009, 39(3): 360-377 (in Chinese))
    Zhu P, Duan L, Kang Q. Transition to chaos in thermocapillary convection. International Journal of Heat and Mass Transfer, 2013, 57: 457-464
    朱鹏. 热毛细对流转捩问题研究. [博士论文]. 北京: 中国科学院大学, 2013. 53-64 (Zhu Peng. Study on the transition of thermocapillary convection. [PhD Thesis]. Beijing: University of Chinese Academy of Science, 2013. 53-64 (in Chinese))
    吴笛, 张洋, 段俐等. Bénard-Marangoni对流温度振荡转捩实验研究. 力学学报, 2011, 43(6): 1054-1060 (Wu Di, Zhang Yang, Duan Li, et al. Experimental investigation of the transition of temperature oscillation in Bénard-Marangoni convection. Chinese Journal of Theoretical and Applied Mechani, 2011, 43(6): 1054-1060 (in Chinese))
    陈滨. 混沌波形的相关性-相空间轨迹与混沌序列自相关特性. 西安: 西安电子科技大学出版社, 2011. 30-33 (Chen Bin. The Relativity of Chaotic Waveform-Phase Space Trajectory and the Chaotic Sequence Autocorrelation Properties. Xi'an: Xidian University Press, 2011. 30-33 (in Chinese))
    舒斯特HG. 混沌学引论. 朱鋐雄, 林圭年 译. 第3版. 成都: 四川教育出版社, 2010. 152-152 (Schuster HG. A introduction to chaos. Zhu Hongxiong, Lin Guinian, translation. The third edition. Chengdu: Sichuan Educational Press, 2010. 152-152)
    陈瑞熊. 用混沌理论解释湍流现象. http://blog.sina.com.cn/s/blog_53d3accd0102e0f6.html" target="_blank"> http://blog.sina.com.cn/s/blog_53d3accd0102e0f6.html. 2012-11-30 (Chen Ruixiong. Explain the turbulence phenomena with the chaos theory. http://blog.sina.com.cn/s/blog_53d3accd0102e0f6.html" target="_blank"> http://blog.sina.com.cn/s/blog_53d3accd0102e0f6.html 2012-11-30 (in Chinese))
    周彬, 朱鹏, 段俐等. 矩形液池内热毛细对流的流动不稳定性. 力学与实践, 2013, 35(3): 39-45 (Zhou Bin, Zhu Peng, Duan Li, et al. Flow instability of thermocapillary convection in rectangular pool. Mechanics and Engineering, 2013, 35(3): 39-45 (in Chinese))
  • Related Articles

    [1]Guo Ziyi, Zhao Jianfu, Li Kai, Hu Wenrui. BIFURCATION ANALYSIS OF THERMOCAPILLARY CONVECTION BASED ON POD-GALERKIN REDUCED-ORDER METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1186-1198. DOI: 10.6052/0459-1879-21-642
    [2]Han Xiujing, Huang Qixu, Ding Muchuan, Bi Qinsheng. A STUDY OF DYNAMICAL MECHANISMS OF THE FAST-SLOW OSCILLATIONS OF HARMONIC GEAR SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1085-1091. DOI: 10.6052/0459-1879-21-621
    [3]Chen Ling, Tang Youqi. BIFURCATION AND CHAOS OF AXIALLY MOVING BEAMS UNDER TIME-VARYING TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1180-1188. DOI: 10.6052/0459-1879-19-068
    [4]Wu Yongqiang, Duan Li, Li Yongqiang, Kang Qi. GROUND EXPERIMENTS OF BOUYANT THERMOCAPILLARY CONVECTION OF LARGE SCALE LIQUID BRIDGE WITH LARGE PRANDTL NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 981-989. DOI: 10.6052/0459-1879-12-148
    [5]Zhang Xiaofang, Chen Xiaoke, Bi Qinsheng. RELAXATION BURSTING OF A FAST-SLOW COUPLED OSCILLATOR AS WELL AS THE MECHANISM OF NON-SMOOTH BIFURCATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 576-583. DOI: 10.6052/0459-1879-2012-3-20120314
    [6]Chuanbo Ren Jilei Zhou. Bifurcation research for piecewise linear system involved in discontinuous damping force[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1191-1195. DOI: 10.6052/0459-1879-2011-6-lxxb2011-091
    [7]Di Wu Yang Zhang Li Duan Liang Hu Yongqiang Li Qi Kang. Experimental investigation of the transition of temperature oscillation in Bénard-Marangoni convection[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1054-1060. DOI: 10.6052/0459-1879-2011-6-lxxb2011-149
    [8]Yourong Li, Lan Peng, Shuangying Wu, Nobuyuki Imaishi. Bifurcation of thermocapillary convection in a shallow annular pool of silicon melt[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 43-48. DOI: 10.6052/0459-1879-2007-1-2005-470
    [9]A study of destabilizing oscillation in the mechanics and electricity coupling system by dynamical bifurcation method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2). DOI: 10.6052/0459-1879-2004-2-2003-067
    [10]THE INFLUENCE OF TEMPERATURE ON CROSS-HATCHING[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 25-27. DOI: 10.6052/0459-1879-1991-1-1995-805

Catalog

    Article Metrics

    Article views (1050) PDF downloads (471) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return