Citation: | Liu Hai, Li Qikaiy, He Yuanhang. MOLECULAR DYNAMICS SIMULATIONS OF HIGH VELOCITY SHOCK COMPRESSED TNT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 174-179. doi: 10.6052/0459-1879-14-141 |
Van Duin ACT, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A, 2001, 105(41): 9396-9409
|
Strachan A, Kober EM, van Duin ACT, et al. Thermal decomposition of RDX from reactive molecular dynamics. J Chem Phys , 2005, 122: 054502
|
Agrawalla S, van Duin ACT. Development and application of a ReaxFF reactive force field for hydrogen combustion. J Phys Chem A, 2011, 115(6): 960-972
|
Nomura K, Kalia RK, Nakano A, et al. Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation. Phys Rev Lett , 2007, 99: 148303
|
Liu LC, Liu Y, Zybin SV, et al. ReaxFF-lg: correction of the ReaxFF reactive force field for london dispersion, with applications to the equations of state for energetic materials. J Phys Chem A, 2011, 115(40): 11016-11022
|
Wen YS, Xue XG, Zhou XQ, et al. Twin induced sensitivity enhancement of hmx versus shock: a molecular reactive force field simulation. J Phys Chem C , 2013, 117: 24368-24374
|
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 1995, 117(1): 1-19 http://lammps.sandia.gov.
|
Dremin AN. Shock discontinuity zone effect: the main factor in the explosive decomposition detonation process. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 1992, 339(1654): 355-364
|