Citation: | Guo Qiang, Guo Xinglin, Fan Junling, Hou Peijun, Wu Chengwei. AN ENERGY APPROACH TO RAPIDLY ESTIMATE FATIGUE BEHAVIOR BASED ON INTRINSIC DISSIPATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 931-939. doi: 10.6052/0459-1879-14-139 |
郭杏林, 王晓钢. 疲劳热像法研究综述. 力学进展, 2009, 39(2): 217-227 (Guo Xinglin, Wang Xiaogang. Overview on the thermographic method for fatigue research. Advances in Mechanics, 2009, 39(2): 217-227 (in Chinese))
|
曾伟, 韩旭, 丁桦等. 基于红外热象技术的金属材料疲劳性能研究方法. 机械强度, 2008, 30(4): 658-663 (Zeng Wei, Han Xu, Ding Hua, et al. Fatigue characteristics evaluation of metals based on infrafed thermographic technique. Journal of Mechanical Strength, 2008, 30(4): 658-663 (in Chinese))
|
La Rosa G, Risitano A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International Journal of Fatigue, 2000, 22(1): 65-73
|
Fargione G, Geraci A, La Rosa G, et al. Rapid determination of the fatigue curve by the thermographic method. International Journal of Fatigue, 2002, 24(1): 11-19
|
Luong M. Infrared thermographic scanning of fatigue in metals. Nuclear Engineering and Design, 1995, 158(2): 363-376
|
Luong MP. Fatigue limit evaluation of metals using an infrared thermographic technique. Mechanics of Materials, 1998, 28(1): 155-163
|
Curá F, Curti G, Sesana R. A new iteration method for the thermographic determination of fatigue limit in steels. International Journal of Fatigue, 2005, 27(4): 453-459
|
Krapez JC, Pacou D. Thermography detection of damage initiation during fatigue tests. In: AeroSense 2002, International Society for Optics and Photonics, 2002. 435-449
|
Berthel B, Chrysochoos A, Wattrisse B, et al. Infrared image processing for the calorimetric analysis of fatigue phenomena. Experimental Mechanics, 2008, 48(1): 79-90
|
Berthel B, Wattrisse B, Chrysochoos A, et al. Thermographic analysis of fatigue dissipation properties of steel sheets. Strain, 2007, 43(3): 273-279
|
Chrysochoos A, Louche H. An infrared image processing to analyse the calorific effects accompanying strain localisation. International Journal of Engineering Science, 2000, 38(16): 1759-1788
|
Chrysochoos A, Pham H, Maisonneuve O. Energy balance of thermoelastic martensite transformation under stress. Nuclear Engineering and Design, 1996, 162(1): 1-12
|
Morabito A, Chrysochoos A, Dattoma V, et al. Analysis of heat sources accompanying the fatigue of 2024 T3 aluminium alloys. International Journal of Fatigue, 2007, 29(5): 977-984
|
Boulanger T, Chrysochoos A, Mabru C, et al. Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. International Journal of Fatigue, 2004, 26(3): 221-229
|
Connesson N, Maquin F, Pierron F. Dissipated energy measurements as a marker of microstructural evolution: 316L and DP600. Acta Materialia, 2011, 59(10): 4100-4115
|
Connesson N, Maquin F, Pierron F. Experimental energy balance during the first cycles of cyclically loaded specimens under the conventional yield stress. Experimental Mechanics, 2011, 51(1): 23-44
|
Maquin F, Pierron F. Heat dissipation measurements in low stress cyclic loading of metallic materials: from internal friction to micro-plasticity. Mechanics of Materials, 2009, 41(8): 928-942
|
Maquin F, Pierron F. Refined experimental methodology for assessing the heat dissipated in cyclically loaded materials at low stress levels. Comptes Rendus Mécanique, 2007, 335(3): 168-174 Comptes Rendus M">
|
Meneghetti G. Analysis of the fatigue strength of a stainless steel based on the energy dissipation. International Journal of Fatigue, 2007, 29(1): 81-94
|
Meneghetti G, Ricotta M. The use of the specific heat loss to analyse the low-and high-cycle fatigue behaviour of plain and notched specimens made of a stainless steel. Engineering Fracture Mechanics, 2012, 81: 2-16
|
Meneghetti G, Ricotta M, Atzori B. A synthesis of the push-pull fatigue behaviour of plain and notched stainless steel specimens by using the specific heat loss. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(12): 1306-1322
|
Yang B, Liaw P, Morrison M, et al. Temperature evolution during fatigue damage. Intermetallics, 2005, 13(3): 419-428
|
Yang B, Liaw P, Wang H, et al. Thermographic investigation of the fatigue behavior of reactor pressure vessel steels. Materials Science and Engineering: A, 2001, 314(1): 131-139
|
李源, 韩旭, 刘杰等. 一种基于耗散能计算的高周疲劳参数预测方法. 力学学报, 2013, 45(3): 367-374 (Li Yuan, Han Xu, Liu Jie, et al. A prediction method on high-cycle fatigue parameters based on dissipated energy computation. Acta Mechanica Sinica, 2013, 45(3): 367-374 (in Chinese))
|
Fan J, Guo X, Wu C. A new application of the infrared thermography for fatigue evaluation and damage assessment. International Journal of Fatigue, 2012, 44: 1-7
|
Fan JL, Guo XL, Wu CW, et al. Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints. Materials Science and Engineering: A, 2011, 528(29): 8417-8427
|
Crupi V. An unifying approach to assess the structural strength. International Journal of Fatigue, 2008, 30(7): 1150-1159
|
Risitano A, Risitano G. Cumulative damage evaluation of steel using infrared thermography. Theoretical and Applied Fracture Mechanics, 2010, 54(2): 82-90
|
Caillard D, Martin J. Thermally Activated Mechanisms in Crystal Plasticity. Amsterdam: Elserier, 2003.
|
Slimani A, Fleischmann P, Fougéres R. Dislocation dynamic in aluminum polycrystals during cyclic plasticity studied by acoustic-emission. Journal de Physique
|
Ⅲ, 1992, 2(6): 933-945
|