EI、Scopus 收录
Guo Qiang, Guo Xinglin, Fan Junling, Hou Peijun, Wu Chengwei. AN ENERGY APPROACH TO RAPIDLY ESTIMATE FATIGUE BEHAVIOR BASED ON INTRINSIC DISSIPATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 931-939. doi: 10.6052/0459-1879-14-139
Citation: Guo Qiang, Guo Xinglin, Fan Junling, Hou Peijun, Wu Chengwei. AN ENERGY APPROACH TO RAPIDLY ESTIMATE FATIGUE BEHAVIOR BASED ON INTRINSIC DISSIPATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 931-939. doi: 10.6052/0459-1879-14-139


doi: 10.6052/0459-1879-14-139
Funds:  The project was supported by the project was supported by the Natural Science Foundation of China (11072045) and the National Basic Research Program of China (2011CB706504).
  • Received Date: 2014-05-19
  • Rev Recd Date: 2014-07-31
  • Publish Date: 2014-11-18
  • The process of fatigue damage accumulation is an energy dissipation process accompanied with temperature variation. Compared with the local temperature rise in fatigue process, intrinsic dissipation is a direct reflection of material energy change, is related to the material microstructure evolution more closely, and has more definite physical meaning to be taken as a fatigue indicator. Based on a one-dimensional double exponential regression of the specimen surface temperature rise, a calculation model of intrinsic dissipation is established in this paper. On this basis, an energy approach for rapid evaluation of fatigue behavior is proposed. Utilizing this energy approach, the fatigue behavior of FV520B stainless steel has been experimentally studied. The analyses and comparisons of experimental results prove the feasibilities and validities of the energy approach and calculation model.


  • loading
  • 郭杏林, 王晓钢. 疲劳热像法研究综述. 力学进展, 2009, 39(2): 217-227 (Guo Xinglin, Wang Xiaogang. Overview on the thermographic method for fatigue research. Advances in Mechanics, 2009, 39(2): 217-227 (in Chinese))
    曾伟, 韩旭, 丁桦等. 基于红外热象技术的金属材料疲劳性能研究方法. 机械强度, 2008, 30(4): 658-663 (Zeng Wei, Han Xu, Ding Hua, et al. Fatigue characteristics evaluation of metals based on infrafed thermographic technique. Journal of Mechanical Strength, 2008, 30(4): 658-663 (in Chinese))
    La Rosa G, Risitano A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International Journal of Fatigue, 2000, 22(1): 65-73  
    Fargione G, Geraci A, La Rosa G, et al. Rapid determination of the fatigue curve by the thermographic method. International Journal of Fatigue, 2002, 24(1): 11-19  
    Luong M. Infrared thermographic scanning of fatigue in metals. Nuclear Engineering and Design, 1995, 158(2): 363-376
    Luong MP. Fatigue limit evaluation of metals using an infrared thermographic technique. Mechanics of Materials, 1998, 28(1): 155-163
    Curá F, Curti G, Sesana R. A new iteration method for the thermographic determination of fatigue limit in steels. International Journal of Fatigue, 2005, 27(4): 453-459  
    Krapez JC, Pacou D. Thermography detection of damage initiation during fatigue tests. In: AeroSense 2002, International Society for Optics and Photonics, 2002. 435-449
    Berthel B, Chrysochoos A, Wattrisse B, et al. Infrared image processing for the calorimetric analysis of fatigue phenomena. Experimental Mechanics, 2008, 48(1): 79-90  
    Berthel B, Wattrisse B, Chrysochoos A, et al. Thermographic analysis of fatigue dissipation properties of steel sheets. Strain, 2007, 43(3): 273-279  
    Chrysochoos A, Louche H. An infrared image processing to analyse the calorific effects accompanying strain localisation. International Journal of Engineering Science, 2000, 38(16): 1759-1788  
    Chrysochoos A, Pham H, Maisonneuve O. Energy balance of thermoelastic martensite transformation under stress. Nuclear Engineering and Design, 1996, 162(1): 1-12  
    Morabito A, Chrysochoos A, Dattoma V, et al. Analysis of heat sources accompanying the fatigue of 2024 T3 aluminium alloys. International Journal of Fatigue, 2007, 29(5): 977-984  
    Boulanger T, Chrysochoos A, Mabru C, et al. Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. International Journal of Fatigue, 2004, 26(3): 221-229  
    Connesson N, Maquin F, Pierron F. Dissipated energy measurements as a marker of microstructural evolution: 316L and DP600. Acta Materialia, 2011, 59(10): 4100-4115  
    Connesson N, Maquin F, Pierron F. Experimental energy balance during the first cycles of cyclically loaded specimens under the conventional yield stress. Experimental Mechanics, 2011, 51(1): 23-44  
    Maquin F, Pierron F. Heat dissipation measurements in low stress cyclic loading of metallic materials: from internal friction to micro-plasticity. Mechanics of Materials, 2009, 41(8): 928-942  
    Maquin F, Pierron F. Refined experimental methodology for assessing the heat dissipated in cyclically loaded materials at low stress levels. Comptes Rendus Mécanique, 2007, 335(3): 168-174  Comptes Rendus M">
    Meneghetti G. Analysis of the fatigue strength of a stainless steel based on the energy dissipation. International Journal of Fatigue, 2007, 29(1): 81-94  
    Meneghetti G, Ricotta M. The use of the specific heat loss to analyse the low-and high-cycle fatigue behaviour of plain and notched specimens made of a stainless steel. Engineering Fracture Mechanics, 2012, 81: 2-16  
    Meneghetti G, Ricotta M, Atzori B. A synthesis of the push-pull fatigue behaviour of plain and notched stainless steel specimens by using the specific heat loss. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(12): 1306-1322  
    Yang B, Liaw P, Morrison M, et al. Temperature evolution during fatigue damage. Intermetallics, 2005, 13(3): 419-428
    Yang B, Liaw P, Wang H, et al. Thermographic investigation of the fatigue behavior of reactor pressure vessel steels. Materials Science and Engineering: A, 2001, 314(1): 131-139
    李源, 韩旭, 刘杰等. 一种基于耗散能计算的高周疲劳参数预测方法. 力学学报, 2013, 45(3): 367-374 (Li Yuan, Han Xu, Liu Jie, et al. A prediction method on high-cycle fatigue parameters based on dissipated energy computation. Acta Mechanica Sinica, 2013, 45(3): 367-374 (in Chinese))
    Fan J, Guo X, Wu C. A new application of the infrared thermography for fatigue evaluation and damage assessment. International Journal of Fatigue, 2012, 44: 1-7  
    Fan JL, Guo XL, Wu CW, et al. Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints. Materials Science and Engineering: A, 2011, 528(29): 8417-8427
    Crupi V. An unifying approach to assess the structural strength. International Journal of Fatigue, 2008, 30(7): 1150-1159  
    Risitano A, Risitano G. Cumulative damage evaluation of steel using infrared thermography. Theoretical and Applied Fracture Mechanics, 2010, 54(2): 82-90  
    Caillard D, Martin J. Thermally Activated Mechanisms in Crystal Plasticity. Amsterdam: Elserier, 2003.
    Slimani A, Fleischmann P, Fougéres R. Dislocation dynamic in aluminum polycrystals during cyclic plasticity studied by acoustic-emission. Journal de Physique
    Ⅲ, 1992, 2(6): 933-945
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1189) PDF downloads(713) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint