EI、Scopus 收录
中文核心期刊
Huang Kun, Yin Yajun, Qu Benning, Wu Jiye. A MECHANICS MODEL OF A MONOLAYER GRAPHENE BASED ON THE LENOSKY INTERATOMIC POTENTIAL ENERGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 905-910. doi: 10.6052/0459-1879-14-076
Citation: Huang Kun, Yin Yajun, Qu Benning, Wu Jiye. A MECHANICS MODEL OF A MONOLAYER GRAPHENE BASED ON THE LENOSKY INTERATOMIC POTENTIAL ENERGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 905-910. doi: 10.6052/0459-1879-14-076

A MECHANICS MODEL OF A MONOLAYER GRAPHENE BASED ON THE LENOSKY INTERATOMIC POTENTIAL ENERGY

doi: 10.6052/0459-1879-14-076
Funds:  The project was supported by the National Natural Science Foundation of China (11272175, 11072125).
  • Received Date: 2014-03-24
  • Rev Recd Date: 2014-05-23
  • Publish Date: 2014-11-18
  • In this paper, the equations of motion for a monolayer graphene are obtained by a continuum limit form of elastic energy of the Lenosky C-C covalent bond and Hamilton principle. Using the equations and Galerkin method the static bending of a rectangular monolayer graphene is investigated. It is found that the bending stiffness has a significant effect on the Mechanical Characteristics of the grapheme. The graphene may be described by a plate when the graphene size is small, but the effect of bending stiffness will quickly decrease accompanying the size increment of the graphene. When the short side dimension is greater than 10nm for a rectangular monolayer graphene, the bending stiffness may be neglected and a thin film model is a good agreement with the monolayer graphene.

     

  • loading
  • Geim AK, Novoselov KS. The rise of graphene. Nature Materials, 2007, 6(3): 183-191  
    Rao CNR, Biswas K, Subrahmanyam KS, et al. Graphene, the new nanocarbon. Journal of Materials Chemistry, 2009, 19(17): 2457-2469  
    Neto AC, Geim A. Graphene: Graphene's properties. New Scientist, 2012, 214(2863): iv-v
    Rao CNR, Sood AK, Subrahmanyam KS, et al. Graphene: The new two-dimensional nanomaterial. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777  
    嵇天浩, 孙妹, 韩鹏. 半导体/石墨烯纳米复合材料的制备及其应用进展. 新型炭材料, 2013, 6: 401-407 (Ji Tianhao, Sun Mei, Han Peng. A review of the preparation and applications of graphene/semiconductor composites. New Carbon Materials, 2013, 6: 401-407 (in Chinese))
    辜萍, 王 宇, 李广海. 碳纳米管的力学性能及碳纳米管复合材料研究. 力学进展, 2002, 32(4): 563-578 (Gu Ping, Wang Yu, Li Guanghai. Progress in mechanical properties of carbon nanotube and carbon-nanotube -based composites. Advances in Mechanics, 2002, 32(4): 563-578 (in Chinese))
    Huang X, Qi X, Boey F, et al. Graphene-based composites. Chemical Society Reviews, 2012, 41(2): 666-686  
    韩同伟, 贺鹏飞, 王健 等. 石墨烯拉伸力学性能温度相关性的数值模拟. 同济大学学报: 自然科学版, 2009, 37(12): 1638-1641 (Han Tongwei, He Pengfei, Wang Jian, et al. Numerical simulation of temperature dependence of tensile mechanical properties for single graphene sheet. Journal of Tongji University (Natural Science), 2009, 37(12): 1638-1641 (in Chinese))
    Wagner P, Ivanovskaya VV, Rayson MJ, et al. Mechanical properties of nanosheets and nanotubes investigated using a new geometry independent volume definition. Journal of Physics: Condensed Matter, 2013, 25(8): 155302
    Huang M, Pascal TA, Kim H, et al. Electronic- mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Letters, 2011, 11(3): 1241-1246  
    Chien SK, Yang YT. Influence of hydrogen functionalization on thermal conductivity of graphene: Nonequilibrium molecular dynamics simulations. Applied Physics Letters, 2011, 98(3): 033107  
    Wei Y, Wang B, Wu J, et al. Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Letters, 2012, 13(1): 26-30
    Koskinen P, Kit OO. Approximate modeling of spherical membranes. Physical Review B, 2010, 82(23): 235420  
    Tu Z, Ou-Yang Z. Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number. Physical Review B, 2002, 65(23): 233407  
    Wang L, Zheng Q, Liu JZ, et al. Size dependence of the thin-shell model for carbon nanotubes. Physical Review Letters, 2005, 95(10): 105501  
    Huang Y, Wu J, Hwang KC. Thickness of graphene and single-wall carbon nanotubes. Physical Review B, 2006, 74(24): 245413  
    Zhang DB, Akatyeva E, Dumitric? T. Bending ultrathin graphene at the margins of continuum mechanics. Physical Review Letters, 2011, 106(25): 255503  
    Yue K, Gao W, Huang R, et al. Analytical methods for the mechanics of graphene bubbles. Journal of Applied Physics, 2012, 112(8): 083512  
    Iyakutti K, Surya VJ, Emelda K, et al. Simulation of ripples in single layer graphene sheets and study of their vibrational and elastic properties. Computational Materials Science, 2012, 51(1): 96-102  
    Wang L, He X. Vibration of a multilayered graphene sheet with initial stress. Journal of Nanotechnology in Engineering and Medicine, 2010, 1(4): 041004  
    Lenosky T, Gonze X, Teter M, et al. Energetics of negatively curved graphitic carbon. Nature, 1992, 355: 333-335  
    Dym CL, Shames IH. Solid Mechanics. New York: McGraw-Hill, 1973
    Landau LD, Lifshitz EMT. Course of Theoretical Physics: Mechanics. Holland: Elsevier, 1982
    José JV, Saletan EJ. Classical Dynamics: A Contemporary Approach. Cambridge: Cambridge University Press, 1998
    Kusminskiy SV, Campbell DK, Neto AHC. Lenosky's energy and the phonon dispersion of graphene. Physical Review B, 2009, 80(3): 035401
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1004) PDF downloads(819) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return