EI、Scopus 收录
Kou Haijiang, Yuan Huiqun, Zhao Tianyu. ANALYTICAL SOLUTION FOR ROTATIONAL RUBBING PLATE UNDER THERMAL SHOCK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 946-956. doi: 10.6052/0459-1879-14-075
Citation: Kou Haijiang, Yuan Huiqun, Zhao Tianyu. ANALYTICAL SOLUTION FOR ROTATIONAL RUBBING PLATE UNDER THERMAL SHOCK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 946-956. doi: 10.6052/0459-1879-14-075


doi: 10.6052/0459-1879-14-075
Funds:  The project was supported by the National Natural Science Foundation of China (51275081) and the State Key Program of National Natural Science of China (51335003).
  • Received Date: 2014-03-21
  • Rev Recd Date: 2014-05-23
  • Publish Date: 2014-11-18
  • The analysis method is developed to obtain dynamic characteristics of the rotating cantilever plate with thermal shock and tip-rub. Based on the variational principle, equations of motion are derived considering the differences between rubbing forces in the width direction of the plate. The transverse deformation is decomposed into quasi static deformation of the cantilever plate with thermal shock and dynamic deformation of the rubbing plate under thermal shock. Then deformations are obtained through the calculation of modal characteristics of rotating cantilever plate and temperature distribution function. Special attention is paid to the influence of tip-rub and thermal shock on the plate. The results show that tip-rub has the characteristics of multiple frequency vibrations, and high frequency vibrations are significant. On the contrary, thermal shock shows the low frequency vibrations. The thermal shock makes the rubbing plate gradually change into low frequency vibrations. Because rub-induced vibrations are more complicated than those caused by thermal shock, tip-rub is easier to result in the destruction of the blade. The increasing friction coefficient intensifies vibrations of the rubbing plate. Minimizing friction coefficients can be an effective way to reduce rub-induced damage through reducing the surface roughness between the blade tip and the inner surface of the casing.


  • loading
  • Lesaffre N, Sinou JJ, Thouverez F. Contact analysis of a flexible bladed-rotor. European Journal of Mechanics A-solids, 2007, 26(3): 541-557  
    Batailly A, Legrand M, Cartraud P, et al. Assessment of reduced models for the detection of modal interaction through rotor stator contacts. Journal of Sound and Vibration, 2010, 329(24): 5546-5562
    Sinha SK. Non-linear dynamic response of a rotating radial Timoshenko beam with periodic pulse loading at the free-end. International Journal of Non-linear Mechanics, 2005, 40(1), 113-149  
    Williams RJ. Simulation of blade casing interaction phenomena in gas turbines resulting from heavy tip rubs using an implicit time marching method. In: Proceedings of ASME Turbo Expo, 2011, No. GT2011-45495
    刘书国, 洪杰, 陈萌. 航空发动机叶片-机匣碰摩过程的数值模拟. 航空动力学报, 2011, 26(6): 1282-1288 (Liu Shuguo, Hong Jie, Chen Meng. Numerical simulation of the dynamic process of aero-engine blade-to-case rub-impact. Journal of Aerospace Power, 2011, 26(6): 1282-1288 (in Chinese))
    Legrand M, Batailly A, Magnain B, et al. Full three-dimensional investigation of structural contact interactions in turbomachines. Journal of Sound and Vibration, 2012, 331(11): 2578-2601  
    Batailly A, Legrand M, Millecamps A, et al. Numerical-experimental comparison in the simulation of rotor/stator interaction through blade-tip/abradable coating contact. Journal of Engineering for Gas Turbines and Power, 2012, 134(8): 082504  
    Natarajan S, Baiz PM, Ganapathi M, et al. Linear free flexural vibration of cracked functionally graded plates in thermal environment. Computers and Structures, 2011, 89(15): 1535-1546
    Wang BL, Noda N, Han JC, et al. Surface thermal shock fracture of a semi-infinite piezoelectric medium (poling axis parallel to the crack plane). Mechanics of Materials, 2002, 34(3): 135-144  
    Jeyaraj P, Padmanabhan C, Ganesan N. Vibration and acoustic response of an isotropic plate in a thermal environment. Journal of Vibration and Acoustics-Transactions of the ASME, 2008, 130(5): 051005  
    Shiau LC, Kuo SY, Liu YP. Aerothermoelastic analysis of composite laminated plates. Composite Structures, 2012, 94(6): 1982-1990 .  
    熊启林, 田晓耕, 沈亚鹏等. 瞬态热冲击下层合材料板界面的热弹性行为. 力学学报, 2011, 43(3): 630-634 (Xiong Qilin, Tian Xiaogeng, Shen Yapeng, et al. Theromelastic behavior of interface of composite plate under thermal shock. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 630-634 (in Chinese))
    Zhang NH, Wang ML. A mathematical model of thermoviscoelastic FGM thin plates and Ritz approximate solutions. Acta Mechanica, 2006, 181(3): 153-167
    Rao GV, Sinha G, Mukherjee N, et al. A finite element free vibration analysis of a thermally stressed spinning plate. Computers & Structures, 1996, 59(2): 377-385  
    Klauke T, Strehlau U, Kuhhorn A. Integer frequency veering of mistuned blade integrated disks. Journal of Turbomachinery, 2013, 135(6): 061004  
    Farrahi GH, Tirehdast M, Abad EM, et al. Failure analysis of a gas turbine compressor. Engineering Failure Analysis, 2011, 18(1): 474-484  
    Gronstedt T, Irannezhad M, Lei X, et al. First and second law analysis of future aircraft engines. Journal of Engineering for Gas Turbines and Power, 2014, 136(3): 031202
    徐芝纶. 弹性力学. 第三版. 北京: 高等教育出版社, 1990. 1-4 (Xu Zhilun. Elasticity. 3rd edn. Beijing: Higher Education Press, 1990. 1-4 (in Chinese))
    Reddy JN. Energy Principles and Variational Methods in Applied Mechanics. 2nd ed. New York: John Wiley & Sons Inc, 1984
    Anthony Guégan. Parameter study of bladed disk/casing interactions through direct contact in aero-engine assemblies. [Dessertation]. Structural Dynamics and Vibration Laboratory, McGill University, 2008
    寇海江, 袁惠群, 闻邦椿等. 中心刚体-旋转悬臂板耦合系统碰摩动力特性解析法研究. 固体力学学报, 2013, 34(2): 125-132 (Kou Haijiang, Yuan Huiqun, Wen Bangchun, et al. Study on rubbing dynamic behavior of hub-plate with analytical method. Chinese Journal of Solid Mechanics, 2013, 34(2): 125-132 (in Chinese))
    Zhang YX, Wang BL. Thermal shock resistance analysis of a semi-infinite ceramic foam. International Journal of Engineering Science, 2013, 62: 22-30  
    Yoo HH, Pierre C. Modal characteristic of a rotating rectangular cantilever plate. Journal of Sound and Vibration, 2003, 259: 81-96  
    王元淳. 板热弯曲问题的一种新解法. 工程力学. 1996, 13(4): 69-73 (Wang Yuanchun. A new solution for thermal bending problem of plates. Engineering Mechanics. 1996, 13(4): 69-73 (in Chinese))
    Liu JY, Hong JZ. Geometric nonlinear formulation and discretization method for a rectangular plate undergoing large overall motions. Mechanics Research Communications, 2005, 32(5): 561-571  
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (991) PDF downloads(932) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint