EI、Scopus 收录
中文核心期刊
Di Shaocheng, Ji Shunying. GPU-BASED DISCRETE ELEMENT MODELLING OF INTERACTION BETWEEN SEA ICE AND JACK-UP PLATFORM STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 561-571. DOI: 10.6052/0459-1879-13-400
Citation: Di Shaocheng, Ji Shunying. GPU-BASED DISCRETE ELEMENT MODELLING OF INTERACTION BETWEEN SEA ICE AND JACK-UP PLATFORM STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 561-571. DOI: 10.6052/0459-1879-13-400

GPU-BASED DISCRETE ELEMENT MODELLING OF INTERACTION BETWEEN SEA ICE AND JACK-UP PLATFORM STRUCTURE

Funds: The project was supported by the Special Funding for National Marine Commonwealth Industry of China (201105016, 201205007), the National Natural Science Foundation of China (41176012) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20130041110010).
  • Received Date: November 27, 2013
  • Revised Date: January 02, 2014
  • During the interaction between sea ice and jack-up platform, the ice load is the key factor affecting vibration response and fatigue life of the structure. In this study, a discrete element method (DEM) with bonding-breaking function is developed to simulate the breakage characteristics of ice cover and the relative ice load on platform structure. According to the demand in the large scale DEM simulation between the sea ice and the jack-up platform structure with multi-legs, a parallel algorithm with high efficiency is established based on GPU (Graphical Processing Units) technique. In this algorithm, the element neighbor lists are generated with the sorting approach of cell index. The contact modes and contact forces between element-element and element-structure are determined. Meanwhile, the global ice load on jack-up structure can also be obtained. Moreover, the contact models between spherical element and cylindrical structure are also developed to determine the interaction between ice cover and jack-up structure. To validate this GPU-based DEM, the interaction between sea ice and conical jacket offshore structure is simulated and compared well with the field data in the Bohai Sea. Moreover, the ice loads on jack-up structure with multi-legs are simulated. The breakage characteristics of sea ice during the dynamic interaction and the ice loads on each structure legs are obtained. This GPU-based DEM can be applied to determine the ice loads on different offshore structures for ice-resisted structure design and ice-induced structure fatigue analysis.
  • Sodhi D. Crushing failure during ice-structure interaction. Engineering Fracture Mechanics, 2001, 68: 1889-1921
    Palmer A, Yue QJ, Guo FW. Ice-induced vibrations and scaling. Cold Regions Science and Technology, 2010, 60: 189-192
    Huang Y, Ma J, Tian Y. Model tests of four-legged jacket platforms in ice: Part 1. Model tests and results. Cold Regions Science and Technology, 2013, 95: 74-85
    Moslet P O. Medium scale ice-structure interaction. Cold Regions Science and Technology, 2008, 54: 143-152
    Wang Y, Yue Q, Guo F, et al. Performance evaluation of a new ice-resistant jacket platform based on field monitoring. Cold Regions Science and Technology, 2012, 71: 44-53
    Timco GW, Johnston M. Ice loads on the caisson structures in the Canadian Beaufort Sea. Cold Regions Science and Technology, 2004, 38: 185-209
    Jordaan IJ. Mechanics of ice-structure interaction. Engineering Fracture Mechanics, 2001, 68: 1923-1960
    Kärnä T, Kamesaki K, Tsukuda H. A numerical model for dynamic ice-structure interaction. Computers and Structures, 1999, 72: 645-658
    王刚, 武文华, 岳前进. 锥体接触宽度对冰排弯曲破坏模式影响的有限元分析. 工程力学, 2008, 25(1): 235-240 (Wang Gang, Wu Wenhua, Yue Qianjin. FEM analysis on ice-bending failure mode with width effect of ice-cone interaction. Engineering Mechanics, 2008, 25(1): 235-240 (in Chinese))
    Gagnon R E. A numerical model of ice crushing using a foam analogue. Cold Regions Science and Technology, 2011, 65: 335-350
    Kuutti J, Kolari K, Marjavaara P. Simulation of ice crushing experiments with cohesive surface methodology. Cold Regions Science and Technology, 2013, 92: 17-28
    Selvadurai APS, Sepehr K. Two-dimensional discrete element simulations of ice-structure interacion. International Journal of Solids and Structures, 1999, 36: 4919-4940
    Polojärvi A, Tuhkuri J. 3D discrete numerical modelling of ridge keel punch through tests. Cold Regions Science and Technology, 2009, 56: 18-29
    Paavilainen J, Tuhkuri J, Polojärvi A. 2D numerical simulations of ice rubble formation process against an inclined structure. Cold Regions Science and Technology, 2011, 68: 20-34
    Walther JH, Sbalzarini IF. Large-scale parallel discrete element simulations of granular flow. International Journal for Computer-Aided Engineering and Software, 2009, 26(6): 688-697
    陈飞国, 葛蔚, 李静海. 复杂多相流动分子动力学模拟在GPU上的实现.中国科学化学, 2008, 38(12): 1120-1128 (Chen Feiguo, Ge Wei, Li Jinghai. The achievement of molecular dynamics simulation of complex multiphase flow based on GPU. Scientia Sinica Chimica, 2008, 38(12): 1120-1128 (in Chinese))
    夏健明, 魏德敏. 图形处理器在大规模力学问题计算中的应用进展. 力学进展, 2010, 40(1): 57-63 (Xia Jianming, Wei Demin. Advances in graphics processing units' applications to the computation of large-scale mechanical problems. Advances in Mechanics, 2010, 40(1): 57-63 (in Chinese))
    张舒, 褚艳利. GPU高性能运算之CUDA. 北京: 中国水利水电出版社, 2009 (Zhang Shu, Chu Yanli. CUDA of GPU High Performance Computing. Beijing: China Water & Power Press, 2009 (in Chinese))
    Pazouki A, Mazhar H, Negrut. Parallel collision detection of ellipsoids with applications in large scale multibody dynamics. Mathematics and Computers in Simulation, 2012, 82: 879-894
    Radeke CA, Glasser BJ, Khinast JG. Large-scale power mixer simulations using massively parallel GPU architectures. Chemical Engineering Science, 2010, 65: 6435-6442
    Longmore J, Marais P, Kuttel MM. Towards realistic and interactive sand simulation: A GPU-based framework. Powder Technology, 2013, 235: 983-1000
    季顺迎, 狄少丞, 李正等. 海冰与直立结构相互作用的离散单元数值模拟.工程力学, 2013, 30(1): 463-469 (Ji Shunying, Di Shaocheng, Li Zheng, et al. Discrete element modelling of interaction between sea ice and vertical offshore structures. Engineering Mechanics, 2013, 30(1): 463-469 (in Chinese))
    Scholtes L, Donze FV. Modelling progressive failure in fractured rock masses using a 3D discrete element method. International Journal of Rock Mechanics & Mining Sciences, 2012, 52: 18-30
    Onate E, Rojek J. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 3087-3128
    Guo F, Yue Q, Xu N. Model test for studying ice forces on Jcak-up structure. In: Proceedings of the Twentieth International Offshore and Polar Engineering Conference, Beijing, 2010
    Nishiura D, Sakaguchi H. Parallel-vector algorithms for particle simulations on shared-memory multiprocessors. Journal of Computational Physics, 2011, 230: 1923-1938
  • Related Articles

    [1]Huang Xinyu, Tang Huayuan, Wang Lei. RECENT PROGRESS ON SOME FUNDAMENTAL MECHANICAL PROPERTIES OF TPMS STRUCTURES BASED ON ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3099-3115. DOI: 10.6052/0459-1879-24-205
    [2]Chen Haihua, Zhang Xianfeng, Zhao Wenjie, Gao Zhilin, Liu Chuang, Tan Mengting, Xiong Wei, Wang Haiying, Dai Lanhong. EFFECT OF MICROSTRUCTURE ON FLOW BEHAVIOR DURING PENETRATION OF W25Fe25Ni25Mo25 HIGH-ENTROPY ALLOY PROJECTILE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2140-2151. DOI: 10.6052/0459-1879-22-128
    [3]Xu Shun, Zhao Weiwen, Wan Decheng. NUMERICAL STUDY OF DYNAMIC CHARACTERISTICS FOR OFFSHORE WIND TURBINE UNDER COMPLEX ATMOSPHERIC INFLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 872-880. DOI: 10.6052/0459-1879-21-693
    [4]Liu Hailong, Shen Xuefeng, Wang Rui, Cao Yu, Wang Junfeng. STUDY ON SPREADING CHARACTERISTICS OF NANOFLUIDS DROPLET IMPINGING ON SOLID SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1024-1031. DOI: 10.6052/0459-1879-18-187
    [5]Gao Yun, Zou Li, Zong Zhi. NUMERICAL STUDY OF RESPONSE PERFORMANCE OF VORTEX-INDUCED VIBRATION ON A FLEXIBLE CYLINDER WITH PINNED-PINNED BOUNDARY CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 9-20. DOI: 10.6052/0459-1879-17-340
    [6]Zhao Chenggang, Liu Zhenzhen, Li Jian, Liu Yan, Cai Guoqing. EFFECTIVE STRESS IN SOIL MECHANICS AND THE DISCUSSIONS ABOUT ITS FUNCTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 356-361. DOI: 10.6052/0459-1879-14-189
    [7]Xu Jing, Wang Xiaolong, Liu Yunqiao, Gong Xiaobo. MICRO-SCALE NUMERICAL STUDY OF THE EFFECT OF ERYTHROCYTE MECHANICAL PROPERTIES ON THE NEAR-WALL MOTION OF PLATELET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 974-981. DOI: 10.6052/0459-1879-13-045
    [8]Ming Dong, Jisheng Luo. The influence of the turbulent statistical characteristics by cone effect in a supersonic boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3): 394-401. DOI: 10.6052/0459-1879-2008-3-2007-358
    [9]Haoyu Lv, Lee Chun-Hian, Haitao Dong, Gang Chen. Hall effects in three-dimensional MHD generator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3): 306-314. DOI: 10.6052/0459-1879-2008-3-2007-293
    [10]Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198
  • Cited by

    Periodical cited type(13)

    1. 王晓铭,李长河,杨敏,张彦彬,刘明政,高腾,崔歆,王大中,曹华军,陈云,刘波. 纳米生物润滑剂微量润滑加工物理机制研究进展. 机械工程学报. 2024(09): 286-322 .
    2. 刘海龙,王建成,沈学峰,郑诺,王军锋. 黏性流体液滴撞击超疏水壁面奇异射流的试验与模拟. 中国表面工程. 2023(01): 124-134 .
    3. 鲁杰,李亚磊,徐龙,郝继光. 液滴撞击倾斜表面铺展研究. 实验流体力学. 2023(06): 42-50 .
    4. 潘伶,谢旭清,郭锦阳. 纳米液滴撞击润湿梯度表面的分子动力学模拟. 表面技术. 2022(11): 395-404 .
    5. 于子恒,马春红,白少先. SiC表面圆环槽边缘效应实验研究. 物理学报. 2021(04): 254-261 .
    6. 潘伶,张昊,林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报. 2021(13): 313-322 .
    7. 左燕,王锐,严华,魏亚楠,于磊,刘红亮. 荒漠地区光伏组件表面积尘及清洁技术研究. 太阳能. 2019(06): 55-59+47 .
    8. 俞伟元,邢春晓,吴保磊,叶长胜,张涛. 水和乙二醇在特氟龙表面的本征接触角测量. 兰州理工大学学报. 2019(06): 69-73 .
    9. 石庆杰,肖军杰,程光耀,文伟力,张睿,蒋小珊. 微液滴撞击固体表面的铺展行为研究进展. 北京印刷学院学报. 2018(08): 92-98 .
    10. 刘海龙,沈学峰,王睿,曹宇,王军锋. 纳米流体液滴撞击壁面铺展动力学特性研究. 力学学报. 2018(05): 1024-1031 . 本站查看
    11. 焦云龙,董磊,刘小君,刘焜. 微织构表面液滴铺展特性. 交通运输工程学报. 2017(04): 98-105 .
    12. 董琪琪,胡海豹,陈立斌,余思潇. 矩形疏水沟槽表面水滴振荡特性. 力学学报. 2017(06): 1252-1259 . 本站查看
    13. 陈平,李俊玲,邵天敏,项欣,刘光磊. 考虑表面张力影响的表面织构最优参数分析. 机械工程学报. 2016(19): 123-131 .

    Other cited types(13)

Catalog

    Article Metrics

    Article views (1301) PDF downloads (750) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return