Citation: | Wu Zeyan, Wang Lifeng, Wu Zhe. THE SCALED BOUNDARY COORDINATE INTERPOLATION METHOD AND ITS APPLICATION TO SPECTRAL ELEMENT METHOD: NUMERICAL SIMULATION OF THE EULER EQUATIONS OVER UNBOUNDED DOMAINS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 619-623. DOI: 10.6052/0459-1879-13-026 |
Tam CKW, Auriault L, Cambuli F. Perfectly matched layer as an absorbing boundary condition for the linearized Euler equations in open and ducted domains. Journal of Computational Physics,1998,114:213-234
|
Hu FQ, Li XD, Lin DK. Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique. Journal of Computational Physics, 2008, 227: 4398-4424
|
Zhou Y, Wang ZJ. Absorbing boundary conditions for the Euler and Navier-Stokes equations with the spectral difference method. Journal of Computational Physics, 2010, 229: 8733-8749
|
Deeks AJ, Cheng L. Potential flow around obstacles using the scaled boundary finite element method. International Journal for Numerical Methods in Fluids, 2003, 41: 721-741
|
滕斌,赵明,何广华. 三维势流场的比例边界有限元求解方法. 计算力学学报,2006,23(3): 301-306 (Teng Bin, Zhao Ming, He Guanghua. Computation of potential flow around three-dimensional obstacles by a scaled boundary finite element method. Chinese Journal of Computational Mechanics, 2006, 23(3): 301-306 (in Chinese))
|
吴泽艳,王立峰,武哲. 无穷域势流问题的有限元/差分线法混合求解. 计算力学学报, 2011, 28(5): 754-759 (Wu Zeyan, Wang Lifeng, Wu Zhe. Calculation of potential flow problems over an infinite domain based on finite element methods and finite difference method of lines. Chinese Journal of Computational Mechanics, 2011, 28(5): 754-759 (in Chinese))
|
Patera AT. A spectral element method for fluid dynamics: Laminar flow in a channel expansion. Journal of Computational Physics, 1984,54: 468-488
|
Guo BY, Wang TJ. Composite Laguerre-Legendre spectral method for exterior problems. Adv Comput Math,2010, 32: 393-429
|
Zhuang QQ, Shen J, Xu CG. A coupled Legrndre-Laguerre spectral element method for the Navier-Stokes equations in unbounded domains. J Sci Comput,2010,42: 1-22
|
Wolf JP, Song CM. The scaled boundary finite element method——a primer derivations. Computers & Structures, 2000, 78: 191-210
|
Karniadakis GEm, Sherwin SJ. Spectral/hp element methods for computational fluid dynamics. Oxford: Oxford University Press, 2005
|
蔚喜军,周铁. 流体力学方程的间断有限元方法.计算物理, 2005, 22(2): 108-116 (Yu Xijun, Zhou Tie. Discontinuous finite element methods for solving hydrodynamic equations. Chinese Journal of Computational Physics, 2005, 22(2): 108-116 (in Chinese))
|
吴迪,蔚喜军. 自适应间断有限元方法求解三维欧拉方程.计算物理, 2010, 27(4): 492-500 (Wu Di, Yu Xijun. Adaptive discontinuous galerkin method for euler equations. Chinese Journal of Computational Physics, 2010, 27(4): 492-500 (in Chinese))
|
Jie Shen. Stable and efficient spectrla methods in unbounded domains using laguerre functions. Siam J Numer Anal, 2000, 38: 1113-1133
|
Shen J, Tang T. Spectral and High-Order Method with Applications. Beijing: Science Press, 2006
|
Krivodonova L, Berger M. High-order accurate implementation of solid wall boundary conditions in curved geometries. Journal of Computational Physics, 2006, 211: 492-512
|
Cockburn B, Shu CW. Runge-Kutta discontinuous galerkin methods for convection-dominated problems. Journal of Scientific Computing, 2001, 16(3): 173-261
|
于剑,阎超. Navier-Stokes 方程间断Galerkin有限元方法研究.力学学报, 2010,42(5):962-970 (Yu Jian, Yan Chao. Study on discontinuous Galerkin method for Navier-Stokes equations. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5):962-970
|