EI、Scopus 收录
中文核心期刊
Chen Xiaoping, Li Xinliang, Zhong Fengquan. THE OPTIMIZED REFERENCE ENTHALPY METHOD USING IN HIGH-SPEED TURBULENT CHANNEL FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 614-618. DOI: 10.6052/0459-1879-12-308
Citation: Chen Xiaoping, Li Xinliang, Zhong Fengquan. THE OPTIMIZED REFERENCE ENTHALPY METHOD USING IN HIGH-SPEED TURBULENT CHANNEL FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 614-618. DOI: 10.6052/0459-1879-12-308

THE OPTIMIZED REFERENCE ENTHALPY METHOD USING IN HIGH-SPEED TURBULENT CHANNEL FLOWS

Funds: The project was supported by the National Natural Science Fundation of China (11072248), the Major State Basic Research Development Program of China (2009CB724100), the National Key Technologies R&D Program of China (2012AA01A304) and the CAS Program (KJCX2-EW-J01).
  • Received Date: March 05, 2013
  • Revised Date: April 07, 2013
  • Direct numerical simulations of high-speed turbulent channel flows have been performed. The classic reference enthalpy method was evaluated and optimized by using the data with inflow Mach numbers of 3, 5, 6, 7, and 10. In fully developed turbulent flow, studies have shown that the classic reference enthalpy method is not applicable in high-speed channel flows. The wall heat flux predicted by the optimized reference enthalpy methods I and II are much better than the classic reference enthalpy method; moreover, the optimized reference enthalpy method II is more suitable, whose errors are within 10% compared with DNS. At the same time, the optimized reference enthalpy method II has been verified based on the experiment data of thermal environment of supersonic combustor.
  • Anderson JD. Hypersonic and High-Temperature, 2nd edn. New York: AIAA, 2006
    Bertin JJ, Cummings RM. Critical hypersonic aerothermodynamic phenomena. Annual Review of Fluid Mechanics, 2006, 38: 129-157
    Eckert ERG. Engineering Relations for Heat Transfer and Friction in High-Velocity Laminar and Turbulent Boundary Layer Flow Over Surfaces with Constant Pressure and Temperature. Transactions of the ASME, 1956
    Heiser WH, Pratt DT. Hypersonic airbreathing propulsion. Washington, DC: AIAA, 1994
    Sieder EN, Tate CE. Heat transfer and pressure drop of liquids in tubes. Industrial & Engineering Chemistry, 1936, 28: 1429-1435
    Robert WS. Process Heat Transfer: Principles and Applications. Oxford: Elsevier Science, 2007
    Meador WE, Smart MK. Reference enthalpy method developed from solutions of the boundary-layer equations. AIAA Journal, 2005, l43(1): 130-139
    陈小平, 李新亮, 樊菁. 变比热真实气体效应的高超声速槽道湍流直接数值模拟. 中国科学: 物理学 力学 天文学, 2011, 41(8): 969-979 (Chen Xiaoing, Li XinLiang, Fan Jing. Direct numerical simulation of hypersonic turbulent channel flow in thermally perfect gas. Scientia Sinica Phys, Mech & Astron, 2011, 41(8): 969-979 (in Chinese))
    袁涛, 李龙, 王晶等. 超声速燃烧隔离段热环境的实验测量与理论分析. 见:第四届高超声速科技学术会议, 2011. CSTAM 2011-2771 (Yuan Tao, Li Long, Fan Xuejun, et al. Measurement and calculation of thermal environment of supersonic combustor. In: The Proc. of the Fourth Hypersonic Technology Conference, 2011. CSTAM 2011-2771 (in Chinese))
  • Related Articles

    [1]Xiao Yi, Wang Jingliang, He Chuang, Tan Peng, Zhang Cheng, Fang Qingyan, Chen Gang. DIRECT NUMERICAL SIMULATION OF DRAG MODEL OF DISK-SHAPED PARTICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(8): 1-12. DOI: 10.6052/0459-1879-25-137
    [2]Guo Lin, Shen Jie, Peng Cheng, Guo Zhaoli, Wang Lian-Ping, Niu Zhong-Guo. LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW USING DUGKS-LES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3394-3408. DOI: 10.6052/0459-1879-24-217
    [3]Huang Bohua, Jiang Zichao, Wang Zhuolin, Luo Xuan, Zhang Yi, Yao Qinghe, Yang Gengchao. VORTEX STRUCTURE ANALYSIS OF VORTEX RING COLLISION PROCESS BASED ON DIRECT NUMERICAL SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 2004-2014. DOI: 10.6052/0459-1879-24-006
    [4]Xia Qianjin, Lian Long, Qu Jianxiong, Wang Yongsheng, Xue Yuan, Wang Qiang, Zhao Lihao. DIRECT NUMERICAL SIMULATION OF DRAG REDUCTION IN TURBULENT BOUNDARY LAYERS CONTROLLED BY INCLINED BLOWING AND SUCKING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2454-2467. DOI: 10.6052/0459-1879-21-223
    [5]Tong Fulin, Li Xin, Yu Changping, Li Xinliang. DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208. DOI: 10.6052/0459-1879-17-239
    [6]Zhu Haitao, Shan Peng. DIRECT NUMERICAL SIMULATION OF TURBINE CASCADE FLOW WITH HEAT TRANSFER EFFECTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 672-680. DOI: 10.6052/0459-1879-12-356
    [7]Li Xinliang, Fu Dexun, Ma Yanwen. ESEC{ASSESSMENT OF THE COMPRESSIBLE TURBULENCE MODEL BY USING THE DNS DATA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 222-229. DOI: 10.6052/0459-1879-2012-2-20120204
    [8]Jianzhong Chang, Kang An, Hantao Liu. The study on the sedimentation of solid particle influenced by thermal convection using direct numerical simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 205-211. DOI: 10.6052/0459-1879-2010-2-2008-649
    [9]Wenbo Miao, Xiaoli Cheng, Qiang Wang. Direct numerical simulation of a compressible transitional mixing layer with combustion chemical reactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 114-120. DOI: 10.6052/0459-1879-2008-1-2007-296
    [10]THE DIRECT NUMERICAL SIMULATION OF THREE DIMENSIONAL MERGER FOR TWO PARALLEL VORTEX TUBES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(1): 1-8. DOI: 10.6052/0459-1879-1998-1-1995-091

Catalog

    Article Metrics

    Article views (2034) PDF downloads (736) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return