Citation: | Li Zhenbo, Tang Jiashi, Cai Ping. HOMOCLINIC ORBIT OF STRONGLY NONLINEAR AUTONOMOUS OSCILLATOR VIA GENERALIZED PADÉ APPROXIMATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 461-464. DOI: 10.6052/0459-1879-12-277 |
Nayfeh AH,Balachandran B. Applied Nonlinear Dynamics,Analytical,Computational,and Experimental Methods. New York: Wiley, 1995
|
Melnikov VK. On the Stability of the Center for Time Periodic Perturbations. Moscow: Trans Moscow Math, 1963
|
Chen SH, Chen YY, Sze KY. A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators. Journal of Sound and Vibration, 2009, 322: 381-392
|
Chen YY, Chen SH, Sze KY. A hyperbolic Lindstedt-Poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators. Acta Mechanica Sinica, 2009, 25(5): 721-729
|
Xu Z, Chan HSY, Chung KW. Separatrices and limit cycles of strongly nonlinear oscillators by the perturbation-incremental method. Nonlinear Dynamics, 1996, 11: 213-233
|
Mikhlin YV. Matching of local expansions in the theory of non-linear vibrations. Journal of Sound and Vibration, 1995, 182: 577-588
|
Manucharyan GV, Mikhlin YV. The construction of homo- and heteroclinic orbits in non-linear systems. Journal of Applied Mathematics and Mechanics, 2005, 69: 39-48
|
张琪昌,冯晶晶,王炜. 类Padé逼近方法在二维振动系统的应用. 力学学报, 2011, 43(5): 914-921 (Zhang Qichang, Feng Jingjing, Wang Wei. The construction of homoclinic and heterclinic orbit in two-dimensional nonlinear system based on the quasi-Padé approximation. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 914-921 (in Chinese))
|
Emaci E, Vakakis AF, Andrianov IV, et al. Study of two-dimensional axisymmetric breathers using Padé approximants. Nonlinear Dynamics, 1997, 13: 327-338
|
Martín P, Baker GA. Two-point quasifractional approximant in physics. Truncation error. Journal of Mathematical Physics, 1991, 32: 1470-1477
|