EI、Scopus 收录
中文核心期刊
Xia Yang, Hu Ping, Tang Limin. DIRECT FORMULATION OF QUADRILATERAL PLANE ELEMENT WITH QUASI-CONFORMING METHOD——INTO THE FORBIDDEN ZONE OF FEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 839-850. DOI: 10.6052/0459-1879-12-105
Citation: Xia Yang, Hu Ping, Tang Limin. DIRECT FORMULATION OF QUADRILATERAL PLANE ELEMENT WITH QUASI-CONFORMING METHOD——INTO THE FORBIDDEN ZONE OF FEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 839-850. DOI: 10.6052/0459-1879-12-105

DIRECT FORMULATION OF QUADRILATERAL PLANE ELEMENT WITH QUASI-CONFORMING METHOD——INTO THE FORBIDDEN ZONE OF FEM

Funds: The project was supported by the National Natural Science Foundation of China (10932003,11272075),the National High Technology Research and Development Program of China (2009AA04Z101),the National Basic Research Project of China (2010CB832700) and the Great Project of Ministry of Industrialization and Information of China (2011ZX04001-21).
  • Received Date: April 17, 2012
  • Revised Date: May 27, 2012
  • The direct formulation of quadrilateral plane element in rectangular Cartesian coordinate system has been a forbidden zone for finite element method.In this paper,the quasi-conforming finite element method is applied on this problem and a bilinear element as well as complete second-order element is constructed.Meanwhile,the convergence analysis of the elements is carried out with "Taylor expansion test" and the comparative study with isoparametric element is also considered.The results show the direct formulation of quadrilateral plane elements is feasible within the quasi-conforming framework,and there is not any convergence problem with these elements.Therefore the finite element theory concerning plane element can be unified by quasi-conforming framework.Compared with isoparametric elements,the bilinear element present in this paper is easy to formulate,with stable performance and explicit stiffness matrix for the plane problem analysis.
  • Zienkiewicz OC,Taylor RL,Zhu JZ.The Finite Element Method.6th edn.Burlington:Elsevier,2006
    王勖成.有限单元法.北京:清华大学出版社,2003 (Wang Xuchen.Finite Element Methods.Beijing:Tsinghua University Press,2003 (in Chinese))
    Cook RD,Malkus DS,Plesha ME,et al.Concepts and Applications of Finite Element Analysis,4th edn.New York:Wiley & Sons,2007
    Irons BM.Engineering applications of numerical integration in stiffness methods.AIAA Journal,1966,4(11):2035-2037
    Wilson EL,Taylor RL,Doherty WP,et al.Incompatible displacement models.In:Fenves SJ,ed.Numerical and Computer Methods in Structural Mechanics.New York:Academic Press,1973:43-57
    Taylor R,Wilson E,Beresford P.A non-conforming element for stress analysis.International Journal for Numerical Methods in Engineering,1976,10(6):1211-1219
    吴长春,卞学鐄.非协调数值分析与杂交元方法.北京:科学出版社,1997 (Wu Changchun,Pian Theodore Hsueh-Huang.Nonconforming Numerical Analysis and Hybrid Finite Element Method.Beijing:Science Press,1997 (in Chinese))
    Wu C,Huang M,Pian T.Consistency condition and convergence criteria of incompatible elements:general formulation of incompatible functions and its application.Computers & Structures,1987,27(5):639-644
    田宗漱,卞学鐄.多变量变分原理与多变量有限元方法.北京:科学出版社,2011 (Tian Zhongshu,Pian Theodore Hsueh-Huang.Multivariable Variaional Method and Multivariable Finite Element Method.Beijing:Science Press,2011 (in Chinese))
    龙驭球,龙志飞,岑松.新型有限元论.北京:清华大学出版社,2004 (Long Yuqiu,Long Zhifei,Chen Song.Novel Formulation of Finite Element Method.Beijing:Tsinghua University,2004 (in Chinese))
    龙驭球,陈晓明.两个抗畸变的四边形膜元.清华大学学报(自然科学版),2003,43(10):1380-1385 (Long Yuqiu,Chen Xiaoming.Two robust quadrilateral membrane elements.Journal of Tsinghua University (Science & Technology),2003,43(10):1380-1385 (in Chinese))
    Chen XM,Cen S,Fu XR,et al.A new quadrilateral area coordinate method (QACM-II) for developing quadrilateral finite element models.International Journal for Numerical Methods in Engineering,2008,73(13):1911-1941
    唐立民,陈万吉,刘迎曦.有限元分析中的拟协调元.大连工学院学报,1980,19(2):19-35 (Tang Limin,Chen Wanji,Liu Yingxi.Quasi-conforming elements for finite element analysis.Journal of Dalian University of Technology,1980,19(2):19-35 (in Chinese))
    Tang L,Chen W,Liu Y.String net function approximation and quasi-conforming element technique,In:Alturi SN,Gallagher RH,Zienkiewicz OC,eds.Hybrid and Mixed Finite Element Methods.New York:John Wiley & Sons,Ltd,1983.96-111
    Liu HX,Tang LM.Qusiconforming plane element with drilling degree of freedom.Computatinal Structural Mechanics and Application,1990,7(4):23-31
    刘铁林,朱祎国,吕和祥.解析拟协调平面四边形单元.计算力学学报,1998,15(3):324-328 (Liu Tielin,Zhu Yiguo,L\"u Hexiang.Analytical quasi-conformed plane quadrilateral element.Chinese Journal of Computational Mechanics,1998,15(3):324-328 (in Chinese))
    Shi GY,Voyiadjis GZ.A simple C0 quadrilateral thick/thin shell element based on the refined shell theory and the assumed strain fields.International Journal of Solids and Structures,1991,27(3):283-298
    Lomboy G,Suthasupradit S,Kim K,et al.Nonlinear formulations of a four-node quasi-conforming shell element.Archives of Computational Methods in Engineering,2009,16(2):189-250
    Timoshenko SP,Goodier J.Theory of Elasticity.New York:McGraw,1970
    He DS,Tang LM.The displacement function of quasi-conforming element and its node error.Applied Mathematics and Mechanics-English Edition,2002,23(2):127-137
  • Related Articles

    [1]Gao Xiaowei, Liu Huayu, Cui Miao, Yang Kai, Lyu Jun, Peng Haifeng, Ruan Bo. GENERALIZED WEAK-FORM FREE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2741-2751. DOI: 10.6052/0459-1879-24-160
    [2]Qiu Rundi, Wang Jingzhu, Huang Renfang, Du Tezhuan, Wang Yiwei, Huang Chenguang. THE APPLICATION OF MODIFIED PHYSICS-INFORMED NEURAL NETWORKS IN RAYLEIGH-TAYLOR INSTABILITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2224-2234. DOI: 10.6052/0459-1879-22-253
    [3]Hu Kai, Gao Xiaowei, Xu Bingbing. STRONG WEAK COUPLING FORM ELEMENT DIFFERENTIAL METHOD FOR SOLVING SOLID MECHANICS PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2050-2058. DOI: 10.6052/0459-1879-22-087
    [4]Xiong Xun, Wang Zhu, Zheng Yuxuan, Zhou Fenghua, Xu Zhen. NUMERICAL SIMULATIONS OF TAYLOR IMPACT EXPERIMENTS OF QUARTZ GLASS BARS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1082-1090. DOI: 10.6052/0459-1879-19-017
    [5]Wang Changsheng, Qi Zhaohui, Zhang Xiangkui, Hu Ping. QUADRILATERAL 4-NODE QUASI-CONFORMING PLANE ELEMENT WITH INTERNAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 971-976. DOI: 10.6052/0459-1879-14-167
    [6]Peng YAN, Chiping Jiang. Analysis of doubly periodic in-plane cracks using the eigenfunction expansion-variational method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 681-687. DOI: 10.6052/0459-1879-2009-5-2008-117
    [7]Wentao Feng, Wentao Jiang, Yubo Fan, Xiaoyan Deng, Jinchuan LiJ, unkai Chen. Numerical study on hemodynamic in an S-type arterial end-to-side anastomosis with taylor patch[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 337-341. DOI: 10.6052/0459-1879-2009-3-2008-105
    [8]Rayleigh-Taylor Instability of A Liquid Drop at High Bond Numbers[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 289-295. DOI: 10.6052/0459-1879-2006-3-2004-079
    [9]Rayleigh-taylor and kelvin-helmholtz instability of compressible fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(6): 655-663. DOI: 10.6052/0459-1879-2004-6-2003-501
    [10]AN ACCURATE MODAL SUPERPOSITION METHOD FOR COMPUTING MODE SHAPE DERIVATIVES IN STRUCTURAL DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 427-434. DOI: 10.6052/0459-1879-1993-4-1995-662

Catalog

    Article Metrics

    Article views (2113) PDF downloads (1290) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return