EI、Scopus 收录
中文核心期刊
Wu Shuang, Feng Yu, Wang Cheng, Zhao Kang, Zhang Zheng. Numerical simulation study of metal droplets impacting a liquid pool in a vertical magnetic field: tail vortices and jets. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(7): 1-11. DOI: 10.6052/0459-1879-25-118
Citation: Wu Shuang, Feng Yu, Wang Cheng, Zhao Kang, Zhang Zheng. Numerical simulation study of metal droplets impacting a liquid pool in a vertical magnetic field: tail vortices and jets. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(7): 1-11. DOI: 10.6052/0459-1879-25-118

NUMERICAL SIMULATION STUDY OF METAL DROPLETS IMPACTING A LIQUID POOL IN A VERTICAL MAGNETIC FIELD: TAIL VORTICES AND JETS

  • Available Online: May 14, 2025
  • In this paper, the complex physical phenomenon of metal droplets impacting a pool of the same liquid under the action of an external vertical magnetic field is investigated in depth by means of numerical simulations. The study is carried out in an axisymmetric coordinate system, and in order to solve the Navier-Stokes (N-S) equations with the Lorentz force term accurately, the modified volume of fluid (VOF) method and adaptive mesh refinement technique are employed to treat the Lorentz force as an external volume force, which effectively improves the accuracy and computational efficiency of the numerical simulation. Under different Reynolds numbers (ranging from 700 to 13000) and Weber numbers (ranging from 40 to 520), the droplet impact phenomenon is carefully categorized into three types based on the evolution of vortex states: no vortex detachment, vortex detachment, and formation of von Karmen vortex street. The results show that in the case of no vortex shedding, the sputtering phenomenon can be significantly suppressed by increasing the magnetic field strength or the surface tension. In the case of vortex shedding and Von Karmen vortex street formation, the surface tension mainly inhibits the sputtering process, while the vertical magnetic field affects the structure of the vortex ring, resulting in a change in the morphology and distribution of the vortex ring, and slows down the outward motion of the sputtering jet, which changes the dynamics of the droplet field after impact. In particular, when a continuous vortex shedding process triggers the formation of a von Karmen vortex street, the first generated jet oscillates in its root region, and the frequency of the oscillation is closely related to the vortex shedding phenomenon of the von Karmen vortex street. Further analysis reveals that the vertical magnetic field has a non-monotonic influence on the initial oscillating behavior of the jet, which provides a key theoretical basis for a deeper understanding of the complex flow mechanisms during droplet impact in a magnetohydrodynamic environment.
  • [1]
    Falkovich G, Fouxon A, Stepanov MG. Acceleration of rain initiation by cloud turbulence. Nature, 2002, 419(6903): 151-154 doi: 10.1038/nature00983
    [2]
    Hebner TR, Wu CC, Marcy D, et al. Ink-jet printing of doped polymers for organic light emitting devices. Applied Physics Letters, 1998, 72(5): 519-521 doi: 10.1063/1.120807
    [3]
    Kim JH, You SM, Choi SUS. Evaporative spray cooling of plain and microporous coated surfaces. International Journal of Heat and Mass Transfer, 2004, 47(14-16): 3307-3315 doi: 10.1016/j.ijheatmasstransfer.2004.01.018
    [4]
    Molokov S, Reed CB. Review of free-surface MHD experiments and modeling. Fusion Engineering and Design, 2000, 49-50(1): 437-445
    [5]
    Zavoisky YK, Fanchenko SD. On the study of ultra-fast processes. Proceedings of the Academy of Sciences of the USSR, 1955, 100(4): 1-5
    [6]
    Thoroddsen ST, Etoh TG, Takehara K, et al. The air bubble entrapped under a drop impacting on a solid surface. Journal of Fluid Mechanics, 2005, 545(1): 203-212
    [7]
    Lu Y, Hu Q, Lin Y, et al. Transformable liquid-metal nanomedicine. Nature Communications, 2015, 6(1): 101-110
    [8]
    Tran T, de Maleprade H, Sun C, et al. Air entrainment during impact of droplets on liquid surfaces. Journal of Fluid Mechanics, 2013, 7(26): 1-11
    [9]
    Josserand C, Ray P, Zaleski S. Droplet impact on a thin liquid film: Anatomy of the splash. Journal of Fluid Mechanics, 2016, 8(2): 775-805
    [10]
    Oguz HN, Prosperetti A. Bubble entrainment by the impact of drops on liquid surfaces. Journal of Fluid Mechanics, 1990, 2(19): 143-179
    [11]
    姚熊亮, 张阿漫. 简单函数法模拟三维水下爆炸气泡运动. 力学学报, 2006, 38(6): 749-759 (Yao Xiongliang, Zhang Aman. Simulation of three-dimensional underwater explosion bubble motion using the simple function method. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 749-759 (in Chinese)

    Yao Xiongliang, Zhang Aman. Simulation of three-dimensional underwater explosion bubble motion using the simple function method. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 749-759 (in Chinese)
    [12]
    梁刚涛, 沈胜强, 杨勇. 单液滴撞击平面液膜飞溅过程的模拟. 热科学与技术, 2012, 11(1): 8-12 (Liang Gangtao, Shen Shengqiang, Yang Yong. Numerical simulation of splashing process of a single droplet impacting on a planar liquid film. Journal of Thermal Science and Technology, 2012, 11(1): 8-12 (in Chinese)

    Liang Gangtao, Shen Shengqiang, Yang Yong. Numerical simulation of splashing process of a single droplet impacting on a planar liquid film. Journal of Thermal Science and Technology, 2012, 11(1): 8-12 (in Chinese)
    [13]
    李逢超, 付宇, 李超等. 铝液滴撞击曲面的流动特性分析. 物理学报, 2022, 71(18): 301-313 (Li Fengchao, Fu Yu, Li Chao, et al. Analysis of flow characteristics of aluminum droplet impacting a curved surface. Acta Physica Sinica, 2022, 71(18): 301-313 (in Chinese)

    Li Fengchao, Fu Yu, Li Chao, et al. Analysis of flow characteristics of aluminum droplet impacting a curved surface. Acta Physica Sinica, 2022, 71(18): 301-313 (in Chinese)
    [14]
    Sykes TC, Cimpeanu R, Fudge BD, et al. Droplet impact dynamics on shallow pools. Journal of Fluid Mechanics, 2023, 9(70): 101-114
    [15]
    Yu X, Shao Y, Teh KY, et al. Force of droplet impact on thin liquid films. Physics of Fluids, 2022, 34(4): 1-13
    [16]
    Fudge BD, Cimpeanu R, Antkowiak A, et al. Drop splashing after impact onto immiscible pools of different viscosities. Journal of Colloid and Interface Science, 2023, 6(41): 585-594
    [17]
    Hasegawa K, Nara T. Energy conservation during single droplet impact on deep liquid pool and jet formation. Aip Advances, 2019, 9(8): 1-8
    [18]
    Wang H, Liu S, Bayeul-Lainé AC, et al. Analysis of high-speed drop impact onto deep liquid pool. Journal of Fluid Mechanics, 2023, 9(72): 1-42
    [19]
    Tagawa T. Numerical simulation of two-phase flows in the presence of a magnetic field. Mathematics and Computers in Simulation, 2006, 72(2-6): 212-219 doi: 10.1016/j.matcom.2006.05.040
    [20]
    Tagawa T. Numerical simulation of a falling droplet of liquid metal into a liquid layer in the presence of a uniform vertical magnetic field. ISIJ International, 2005, 45(7): 954-961 doi: 10.2355/isijinternational.45.954
    [21]
    Wang JJ, Zhang J, Ni MJ, et al. Numerical study of single droplet impact onto liquid metal film under a uniform magnetic field. Physics of Fluids, 2014, 26(12): 1-16
    [22]
    Ren DW, Wu S, Yang JC, et al. Investigation of liquid metal drop impingement on a liquid metal surface under the influence of a horizontal magnetic field. Physics of Fluids, 2020, 32(5): 1-14
    [23]
    Zhang J, Han TY, Yang JC, et al. On the spreading of impacting drops under the influence of a vertical magnetic field. Journal of Fluid Mechanics, 2016, 8(9): 1-13
    [24]
    Wu S, Zhang J, Xiao Q, et al. Comparison of two interfacial flow solvers: Specific case of a single droplet impacting onto a deep pool. Computers & Mathematics with Applications, 2021, 8(1): 664-678
    [25]
    Moreau RJ. Magnetohydrodynamics. Springer Science & Business Media, 2013
    [26]
    Popinet S. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries. Journal of Computational Physics, 2003, 190(2): 572-600 doi: 10.1016/S0021-9991(03)00298-5
    [27]
    Zhang J, Ni MJ. Direct simulation of multi-phase MHD flows on an unstructured Cartesian adaptive system. Journal of Computational Physics, 2014, 270(1): 345-36528
    [28]
    Bell JB, Colella P, Glaz HM. A second-order projection method for the incompressible Navier-Stokes equations. Journal of Computational Physics, 1989, 85(2): 257-283 doi: 10.1016/0021-9991(89)90151-4
    [29]
    Wu S, Zhang J, Ni MJ. Numerical study of a single droplet falling through a nonuniform horizontal magnetic field with a constant gradient. International Journal of Multiphase Flow, 2019, 110: 18-36 doi: 10.1016/j.ijmultiphaseflow.2018.08.006
    [30]
    Agbaglah G, Thoraval MJ, Thoroddsen ST, et al. Drop impact into a deep pool: vortex shedding and jet formation. Journal of Fluid Mechanics, 2015, 76(4): 1-12
  • Related Articles

    [1]Qi Zhaohui Fang Huiqing. Study on redundant constraints in multibody systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 390-399. DOI: 10.6052/0459-1879-2011-2-lxxb2009-596
    [2]Efficient computational method for dynamics of flexible multibody systems based on absolute nodal coordinate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1197-1205. DOI: 10.6052/0459-1879-2010-6-lxxb2009-543
    [3]一类刚-柔耦合系统的建模与稳定性研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 439-447. DOI: 10.6052/0459-1879-1997-4-1995-249
    [4]TWO POINT BOUNDARY VALUE INVERSE DYNAMIC METHODS OF FLEXIBLE MANIPULATORS ——THEORETICAL ANALYSIS AND EXPERIMENTAL RESULTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(3): 373-379. DOI: 10.6052/0459-1879-1997-3-1995-241
    [5]PARALLEL COMPUTATIONAL SCHEME FOR THE MANIPULATOR FORWARD DYNAMICS BASED ON THE NON-RECURSIVE FORMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(3): 369-372. DOI: 10.6052/0459-1879-1997-3-1995-240
    [6]ON DYNAMICS OF MULTIBODY SYSTEM DESCRIBED BY FULLY CARTESIAN COORDINATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(1): 84-94. DOI: 10.6052/0459-1879-1997-1-1995-199
    [7]THE LIAPUNOV’S METHOD FOR THE INVERSE DYNAMICS OF A SPACE MANIPULATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 558-563. DOI: 10.6052/0459-1879-1996-5-1995-369
    [8]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
    [9]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
    [10]串列双方柱体流体动力载荷研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(5): 529-534. DOI: 10.6052/0459-1879-1992-5-1995-772

Catalog

    Article Metrics

    Article views (21) PDF downloads (10) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return