Citation: | Deng Lu, Song Lunji, Luo Canyan, Gao He, Bi Lin. Cartesian grid fluid simulation method based on adaptive normal ray refinement. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(6): 1362-1371. DOI: 10.6052/0459-1879-25-073 |
[1] |
Buning PG, Nichols RH. Overflow2 training class-afternoon session//10th Symposium on Overset Composite Grids & Solution Technology, Moffett Field, 2010
|
[2] |
Spurlock WM, Aftosmis MJ, Nemec M. Cartesian Mesh Simulations for the third AIAA sonic boom prediction workshop. Journal of Aircraft, 2021, 59(3): 708-724
|
[3] |
陈坚强, 袁先旭, 涂国华等. 计算流体力学2035愿景. 北京: 科学出版社, 2023 (Chen Jianqiang, Yuan Xianxu, Tu Guohua, et al. Computational Fluid Dynamics 2035 Vision in China. Beijing: Science Press, 2023 (in Chinese)
Chen Jianqiang, Yuan Xianxu, Tu Guohua, et al. Computational Fluid Dynamics 2035 Vision in China. Beijing: Science Press, 2023 (in Chinese)
|
[4] |
Anderson GR, Aftosmis MJ, Nemec M. Cart3D simulations for the second AIAA sonic boom prediction workshop. Journal of Aircraft, 2019, 56(3): 896-911 doi: 10.2514/1.C034842
|
[5] |
Mani M, Dorgan AJ. A perspective on the state of aerospace computational fluid dynamics technology. Annual Review of Fluid Mechanics, 2023, 55(1): 431-457 doi: 10.1146/annurev-fluid-120720-124800
|
[6] |
Zeeuw De. A quadtree-based adaptively-refined Cartesian-grid algorithm for solution of the Euler equations. [PhD Thesis]. Ann Arbor: University of Michigan, 1993
|
[7] |
Lourenço MA, Padilla EL. An octree structured finite volume based solver. Applied Mathematics and Computation, 2020, 365: 1-28
|
[8] |
孟爽. 各向异性自适应笛卡尔网格方法研究及在高速列车中的应用. [博士论文]. 长沙: 中南大学, 2023 (Meng Shuang. Research on anisotropic adaptive Cartesian grid method and its application to high-speed trains. [PhD Thesis]. Changsha: Central South University, 2023 (in Chinese)
Meng Shuang. Research on anisotropic adaptive Cartesian grid method and its application to high-speed trains. [PhD Thesis]. Changsha: Central South University, 2023 (in Chinese)
|
[9] |
罗灿炎. 浸入式笛卡尔网格数值方法及高速列车气动性能应用研究. [博士论文]. 长沙: 中南大学, 2024 (Luo Canyan. Immersed boundary Cartesian grid numerical method and its application in high-speed train aerodynamics. [PhD Thesis]. Changsha: Central South University, 2024 (in Chinese)
Luo Canyan. Immersed boundary Cartesian grid numerical method and its application in high-speed train aerodynamics. [PhD Thesis]. Changsha: Central South University, 2024 (in Chinese)
|
[10] |
Meng S, Zhou D, Yuan X, et al. Enhanced strategy for adaptive Cartesian grid generation with arbitrarily complex 3D geometry. Advances in Engineering Software, 2022, 174: 103304 doi: 10.1016/j.advengsoft.2022.103304
|
[11] |
Nakahashi K. Aeronautical CFD in the age of petaflops-scale computing: From unstructured to Cartesian meshes. European Journal of Mechanics B/Fluids, 2013, 40: 75-86 doi: 10.1016/j.euromechflu.2013.02.005
|
[12] |
Chawner JR, Dannenhoffer J, Taylor NJ. Geometry, mesh generation, and the CFD 2030 vision//46th AIAA Fluid Dynamics Conference, Washington, 2016
|
[13] |
Verzicco R. Immersed boundary methods: Historical perspective and future outlook. Annual Review of Fluid Mechanics, 2023, 55(1): 129-155 doi: 10.1146/annurev-fluid-120720-022129
|
[14] |
赵宁, 刘剑明, 田琳琳等. 可压缩流动问题笛卡尔网格模拟方法研究进展与展望. 力学学报, 2025, 57(2): 285-314 (Zhao Ning, Liu Jianming, Tian Linlin, et al. Progress and prospects of cartesian mesh simulation methods for compressible flow problems. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(2): 285-314 (in Chinese) doi: 10.6052/0459-1879-24-374
Zhao Ning, Liu Jianming, Tian Linlin, et al. Progress and prospects of cartesian mesh simulation methods for compressible flow problems. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(2): 285-314 (in Chinese) doi: 10.6052/0459-1879-24-374
|
[15] |
Wang ZJ, Chen RF. Anisotropic solution-adaptive viscous Cartesian grid method for turbulent flow simulation. AIAA Journal, 2002, 40(10): 1969-1978
|
[16] |
Li K, Wu ZN. Nonet-cartesian grid method for shock flow computations. Journal of Scientific Computing, 2003, 20(3): 303-329
|
[17] |
Capizzano F. A compressible flow simulation system based on Cartesian grids with anisotropic refinements//45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, 2007
|
[18] |
Keats WA, Lien FS. Two-dimensional anisotropic cartesian mesh adaptation for the compressible Euler equations. International Journal for Numerical Methods in Fluids, 2010, 46(11): 1099-1125
|
[19] |
Steger JL, Dougherty FC, Benek JA. A chimera grid scheme//ASME Mini-Symposium on Advances in Grid Generation, Houston, 1982
|
[20] |
Karman LJS. Splitflow-A 3D unstructured Cartesian/prismatic grid CFD code for complex geometries//33rd Aerospace Sciences Meeting and Exhibit, Reno, 1995
|
[21] |
常兴华, 王年华, 马戎等. 并行重叠/变形混合网格生成技术及其应用. 气体物理, 2019, 4(6): 12-21 (Chang Xinghua, Wang Nianhua, Ma Rong, et al. Dynamic hybrid mesh generator coupled with overset and deformation in parallel environment. Physics of Gases, 2019, 4(6): 12-21 (in Chinese)
Chang Xinghua, Wang Nianhua, Ma Rong, et al. Dynamic hybrid mesh generator coupled with overset and deformation in parallel environment. Physics of Gases, 2019, 4(6): 12-21 (in Chinese)
|
[22] |
Ueno Y, Ochi A. Airframe noise prediction using Navier-Stokes code with Cartesian and boundary-fitted layer meshes//25th AIAA/CEAS Aeroacoustics Conference, Delft, 2019
|
[23] |
Chesshire G, Henshaw WD. Composite overlapping meshes for the solution of partial differential equations. Journal of Computational Physics, 1990, 90: 1-64 doi: 10.1016/0021-9991(90)90196-8
|
[24] |
Sitaraman J, Floros M, Wissink A, et al. Parallel domain connectivity algorithm for unsteady flow computations using overlapping and adaptive grids. Journal of Computational Physics, 2010, 229(12): 4703-4723 doi: 10.1016/j.jcp.2010.03.008
|
[25] |
韩少强, 宋文萍, 韩忠华等. 高速共轴刚性旋翼非定常流动高精度数值模拟. 航空学报, 2024, 45(9): 177-196 (Han Shaoqiang, Song Wenping, Han Zhonghua, et al. High-accuracy numerical-simulation of unsteady flow over high-speed coaxial rigid rotors. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 177-196 (in Chinese)
Han Shaoqiang, Song Wenping, Han Zhonghua, et al. High-accuracy numerical-simulation of unsteady flow over high-speed coaxial rigid rotors. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 177-196 (in Chinese)
|
[26] |
刘周, 周伟江. 适于黏性计算的自适应笛卡儿网格生成及其应用. 航空学报, 2009, 30(12): 2280-2287 (Liu Zhou, Zhou Weijiang. Adaptive viscous Cartesian grid generation and application. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2280-2287 (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.12.007
Liu Zhou, Zhou Weijiang. Adaptive viscous Cartesian grid generation and application. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2280-2287 (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.12.007
|
[27] |
Lee JD. Development of an efficient viscous approach in a Cartesian grid framework and application to rotor-fuselage interaction. [PhD Thesis]. Atlanta: Georgia Institute of Technology, 2006
|
[28] |
沈志伟, 赵宁, 胡偶. 可压缩黏性流动笛卡尔网格虚拟单元方法研究. 空气动力学学报, 2014, 32(6): 748-754 (Shen Zhiwei, Zhao Ning, Hu Ou. Numerical research of Cartesian based ghost cell method for compressible viscous flows. Acta Aerodynamica Sinica, 2014, 32(6): 748-754 (in Chinese)
Shen Zhiwei, Zhao Ning, Hu Ou. Numerical research of Cartesian based ghost cell method for compressible viscous flows. Acta Aerodynamica Sinica, 2014, 32(6): 748-754 (in Chinese)
|
[29] |
Liu X, Yang B, Ji C, et al. Research on the turbine blade vibration based on the immersed boundary method. Journal of Fluids Engineering, 2018, 140(6): 061402 177
|
[30] |
Yang B, Song M, Zhu G. Research on the ghost cell immersed boundary method for compressible flow. Processes, 2024, 12: 1182 doi: 10.3390/pr12061182
|
[31] |
罗灿炎, 毕林, 徐晶磊等. 笛卡尔网格下不同湍流模型的壁面函数方法研究. 工程力学, 2024, 41(8): 11-22 (Luo Canyan, Bi Lin, Xu Jinglei, et al. Study on wall function method of different turbulence models based on cartesian grid. Engineering Mechanics, 2024, 41(8): 11-22 (in Chinese)
Luo Canyan, Bi Lin, Xu Jinglei, et al. Study on wall function method of different turbulence models based on cartesian grid. Engineering Mechanics, 2024, 41(8): 11-22 (in Chinese)
|
[32] |
Ruffin SM, Sekhar S. A normal ray refinement technique for Cartesian-grid based Navier-Stokes solvers. International Journal of Computational Fluid Dynamics, 2012, 26(4): 231-246 doi: 10.1080/10618562.2012.691970
|
[33] |
Zaki M, Ruffin SM. Conservation and grid adaptation enhancements to a normal ray refinement technique for cartesian-grid based navier-stokes solvers//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, 2012
|
[34] |
Arslanbekov R, Kolobov V, Ruffin SM, et al. Implementation and evaluation of normal ray refinement technique in adaptive cartesian framework//42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, 2013
|
[35] |
Bopp MS, Dement DC, Ruffin SM, et al. An improved object-oriented cartesian grid framework implementing three dimensional normal ray refinement//32nd AIAA Applied Aerodynamics Conference, Atlanta, 2014
|
[36] |
Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics, 1997, 135: 250-258 doi: 10.1006/jcph.1997.5705
|
[37] |
Leer BV. Towards the ultimate conservation difference scheme V. A second-order sequel to Godunov’s Method. Journal of Computational Physics, 1979, 32: 101-136
|
[38] |
Tritton DJ. Experiments on the flow past a circular cylinder at low reynolds numbers. Journal of Fluid Mechanics, 1959, 6(4): 547-567 doi: 10.1017/S0022112059000829
|
[39] |
Zhong M, Zou S, Pan D et al. A simplified discrete unified gas kinetic scheme for incompressible flow. Physics of Fluids, 2020, 32: 093601 doi: 10.1063/5.0021332
|
[40] |
Jawahar P, Kamath H. A high-resolution procedure for euler and Navier-Stokes computations on unstructured grids. Journal of Computational Physics, 2000, 164(1): 165-203 doi: 10.1006/jcph.2000.6596
|
[41] |
Dervieux A, Rizzi A, Van Leer B, et al. Numerical simulation of compressible Euler flows. Biotechnology Progress, 1989, 30(3): 523-534
|