Citation: | Zhang Wei, Li Rujun, Li Yuxue, Peng Yan. Research on the two-scale model of high-cycle fatigue damage of notched plates based on energy conservation in the critical domain. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(6): 1421-1431. DOI: 10.6052/0459-1879-24-586 |
[1] |
宋学官, 来孝楠, 何西旺等. 重大装备形性一体化数字孪生关键技术. 机械工程学报, 2022, 58(10): 298-325 (Song Xueguan, Lai Xiaonan, He Xiwang, et al. Key technologies of shape-performance integrated digital twin for major equipment. Journal of Mechanical Engineering, 2022, 58(10): 298-325 (in Chinese) doi: 10.3901/JME.2022.10.298
Song Xueguan, Lai Xiaonan, He Xiwang, et al. Key technologies of shape-performance integrated digital twin for major equipment. Journal of Mechanical Engineering, 2022, 58(10): 298-325 (in Chinese) doi: 10.3901/JME.2022.10.298
|
[2] |
Peterson RE. Notch sensitivity//Metal Fatigue. New York: McGraw-Hill, 1959: 293-306
|
[3] |
Neuber H. Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. Journal of Applied Mechanics, 1961, 28(4): 544-550 doi: 10.1115/1.3641780
|
[4] |
Taylor D. Geometrical effects in fatigue: A unifying theoretical model. International Journal of Fatigue, 1999, 21(5): 413-420 doi: 10.1016/S0142-1123(99)00007-9
|
[5] |
Bellett D, Taylor D, Marco S, et al. The fatigue behaviour of three-dimensional stress concentrations. International Journal of Fatigue, 2005, 27(3): 207-221 doi: 10.1016/j.ijfatigue.2004.07.006
|
[6] |
Yao WX. Stress field intensity approach for predicting fatigue life. International Journal of Fatigue, 1993, 15(3): 243-246 doi: 10.1016/0142-1123(93)90182-P
|
[7] |
姚卫星. 金属材料疲劳行为的应力场强法描述. 固体力学学报, 1997, 1: 38-48 (Yao Weixing. The description for fatigue behaviours of metals by stress field intensity approach. Chinese Journal of Solid Mechanics, 1997, 1: 38-48 (in Chinese)
Yao Weixing. The description for fatigue behaviours of metals by stress field intensity approach. Chinese Journal of Solid Mechanics, 1997, 1: 38-48 (in Chinese)
|
[8] |
Liao D, Zhu SP, Gao JW, et al. Fatigue life prediction of notched structure using combined critical plane-critical distance approach. Journal of Mechanical Strength, 2023, 2: 454-461
|
[9] |
Susmel L. Theory of critical distances and notched filament-based 3D-printed components: lessons learned from polymers and concrete. Procedia Structural Integrity, 2024, 53: 44-51 doi: 10.1016/j.prostr.2024.01.006
|
[10] |
Ahmed AA, Susmel L. Static assessment of plain/notched polylactide (PLA) 3D-printed with different infill levels: Equivalent homogenised material concept and theory of critical distances. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42: 883-904
|
[11] |
Lazzarin P, Zambardi R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. International Journal of Fracture, 2001, 112(3): 275-298 doi: 10.1023/A:1013595930617
|
[12] |
Branco R, Prates PA, Costa JD, et al. Rapid assessment of multiaxial fatigue lifetime in notched components using an averaged strain energy density approach. International Journal of Fatigue, 2019, 124: 89-98 doi: 10.1016/j.ijfatigue.2019.02.005
|
[13] |
李文奇, 向忠, 李浩然等. 两级变幅应变疲劳本征损伤耗散寿命预测模型研究. 力学学报, 2024, 56(1): 149-156 (Li Wenqi, Xiang Zhong, Li Haoran, et al. Study on the prediction model of the intrinsic damage dissipation life of two-stage variable amplitude strain fatigue. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 149-156 (in Chinese) doi: 10.6052/0459-1879-23-314
Li Wenqi, Xiang Zhong, Li Haoran, et al. Study on the prediction model of the intrinsic damage dissipation life of two-stage variable amplitude strain fatigue. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 149-156 (in Chinese) doi: 10.6052/0459-1879-23-314
|
[14] |
Li HR, Li WQ, Xiang Zhong, et al. A novel nonparametric model for life assessment of high cycle fatigue under uniaxial variable amplitude loading using intrinsic damage dissipation. International Journal of Fatigue, 2023, 172: 107651 doi: 10.1016/j.ijfatigue.2023.107651
|
[15] |
Laiarinandrasana L, Morgeneyer TF, Cheng Y, et al. Microstructural observations supporting thermography measurements for short glass fibre thermoplastic composites under fatigue loading. Continuum Mechanics and Thermodynamics, 2020, 32: 451-469 doi: 10.1007/s00161-019-00748-4
|
[16] |
Sun B, Xu Y, Li Z. Multi-scale fatigue model and image-based simulation of collective short cracks evolution process. Computational Materials Science, 2016, 117: 24-32 doi: 10.1016/j.commatsci.2016.01.021
|
[17] |
Tang J, Hu W, Meng Q, et al. A novel two-scale damage model for fatigue damage analysis of transition region between high- and low-cycle fatigue. International Journal of Fatigue, 2017, 105: 208-218 doi: 10.1016/j.ijfatigue.2017.09.005
|
[18] |
Benedetti M, Santus C. Mean stress and plasticity effect prediction on notch fatigue and crack growth threshold, combining the theory of critical distances and multiaxial fatigue criteria. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(6): 1228-1246
|
[19] |
Shen XL, Zeng DF, Lu LT. Investigating the effect of notch size on critical distance and fatigue limit by coupling the theory of critical distance and finite fracture mechanics. Theoretical and Applied Fracture Mechanics, 2022, 122: 103566 doi: 10.1016/j.tafmec.2022.103566
|
[20] |
Lanning DB, Nicholas T, Haritos GK. On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti-6Al-4V. International Journal of Fatigue, 2005, 27(1): 45-57 doi: 10.1016/j.ijfatigue.2004.06.002
|
[21] |
Taylor D, Kasiri S. A comparison of critical distance methods for fracture prediction. International Journal of Mechanical Sciences, 2008, 50(6): 1075-1081 doi: 10.1016/j.ijmecsci.2008.02.005
|
[22] |
黄克智, 赵军, 张行. 含缺口构件高周疲劳寿命的损伤力学封闭解法. 力学学报, 1993, 4: 452-459 (Huang Kezhi, Zhao Jun, Zhang Xing. Damage mechanics closure method for high cycle fatigue life of components with notches. Chinese Journal of Theoretical and Applied Mechanics, 1993, 4: 452-459 (in Chinese)
Huang Kezhi, Zhao Jun, Zhang Xing. Damage mechanics closure method for high cycle fatigue life of components with notches. Chinese Journal of Theoretical and Applied Mechanics, 1993, 4: 452-459 (in Chinese)
|
[23] |
熊邵辉, 唐雪松. 含缺口金属构件的中高周疲劳寿命预测. 长沙理工大学学报, 2006, 4: 54-58 (Xiong Shaohui, Tang Xuesong. Prediction for intermediate and high cycle fatigue lifetime of notched metallic plates. Journal of Changsha University of Science and Technology, 2006, 4: 54-58 (in Chinese)
Xiong Shaohui, Tang Xuesong. Prediction for intermediate and high cycle fatigue lifetime of notched metallic plates. Journal of Changsha University of Science and Technology, 2006, 4: 54-58 (in Chinese)
|
[24] |
刘新东, 郝际平. 连续介质损伤力学. 北京: 国防工业出版社, 2011: 156-182 (Liu Xindong, Hao Jiping. Continuum Damage Mechanics. Beijing: National Defense Industry Press, 2011: 156-182 (in Chinese)
Liu Xindong, Hao Jiping. Continuum Damage Mechanics. Beijing: National Defense Industry Press, 2011: 156-182 (in Chinese)
|
[25] |
王依兵. 金属构件高周疲劳损伤的多尺度模型. [硕士论文]. 北京: 北京航空航天大学, 2014: 14-34 (Wang Yibing. A multi-scale model of high-cycle fatigue damage on metal structures. [Master Thesis]. Beijing: Beijing University of Aeronautics And Astronautics, 2014: 14-34 (in Chinese)
Wang Yibing. A multi-scale model of high-cycle fatigue damage on metal structures. [Master Thesis]. Beijing: Beijing University of Aeronautics And Astronautics, 2014: 14-34 (in Chinese)
|
[26] |
钟炜辉. 钢结构的高周疲劳损伤有限元分析模型研究. [硕士论文]. 西安: 西安建筑科技大学, 2005: 8-20 (Zhong Weihui. Studies on finite element analysis model of high cycle fatigue damage for steel structure. [Master Thesis]. Xi'an: Xi'an University of Architecture and Technology, 2005: 8-20 (in Chinese)
Zhong Weihui. Studies on finite element analysis model of high cycle fatigue damage for steel structure. [Master Thesis]. Xi'an: Xi'an University of Architecture and Technology, 2005: 8-20 (in Chinese)
|
[27] |
勒迈特 J. 损伤力学教程. 倪金刚, 陶春虎, 译. 北京: 科学出版社, 1996: 46-60 (Lemaiter J. A Course on Damage Mechanics. Ni Jingang, Tao Chunhu, trans. Beijing: Science Press, 1996: 46-60 (in Chinese)
Lemaiter J. A Course on Damage Mechanics. Ni Jingang, Tao Chunhu, trans. Beijing: Science Press, 1996: 46-60 (in Chinese)
|
[28] |
Papadopoulos IV. Exploring the high-cycle fatigue behaviour of metals from the mesoscopic scale. Journal of the Mechanical Behavior of Materials, 1996, 6(2): 93-118 doi: 10.1515/JMBM.1996.6.2.93
|
[29] |
王自强, 段祝平. 塑性细观力学. 北京: 科学出版社, 1995: 166-173 (Wang Ziqiang, Duan Zhuping. Micromechanics of Plasticity. Beijing: Science Press, 1995: 166-173 (in Chinese)
Wang Ziqiang, Duan Zhuping. Micromechanics of Plasticity. Beijing: Science Press, 1995: 166-173 (in Chinese)
|
[30] |
阚前华, 康国政, 徐祥. 非线性本构关系在ABAQUS中的实现. 北京: 科学出版社, 2019: 176-177 (Kan Qianhua, Kang Guozheng, Xu Xiang. Implementations of Nonlinear Constitutive Relations in ABAQUS. Beijing: Science Press, 2019: 176-177 (in Chinese)
Kan Qianhua, Kang Guozheng, Xu Xiang. Implementations of Nonlinear Constitutive Relations in ABAQUS. Beijing: Science Press, 2019: 176-177 (in Chinese)
|
[31] |
Koo S, Han J, Marimuthu KP, et al. Determination of Chaboche combined hardening parameters with dual back stress for ratcheting evaluation of AISI 52100 bearing steel. International Journal of Fatigue, 2019, 122: 152-163 doi: 10.1016/j.ijfatigue.2019.01.009
|
[32] |
陶志强, 张鸣, 朱煜等. 多轴载荷下基于权平均最大剪切应力临界面的疲劳寿命预测方法. 机械强度, 2021, 43(3): 719-725 (Tao Zhiqiang, Zhang Ming, Zhu Yu, et al. Fatigue life prediction methodology based on weight-averaged maximum shear stress plane under multiaxial loading. Journal of Mechanical Strength, 2021, 43(3): 719-725 (in Chinese)
Tao Zhiqiang, Zhang Ming, Zhu Yu, et al. Fatigue life prediction methodology based on weight-averaged maximum shear stress plane under multiaxial loading. Journal of Mechanical Strength, 2021, 43(3): 719-725 (in Chinese)
|
[33] |
Liu XT, Ma MZ. Cumulative fatigue damage theories for metals: Review and prospects. International Journal of Structural Integrity, 2023, 14(5): 629-662 doi: 10.1108/IJSI-09-2022-0119
|
[34] |
姚卫星. 结构疲劳寿命分析. 北京: 科学出版社, 2019: 255-284 (Yao Weixing. Fatigue Life Estimation of Structures. Beijing: Science Press, 2019: 255-284 (in Chinese)
Yao Weixing. Fatigue Life Estimation of Structures. Beijing: Science Press, 2019: 255-284 (in Chinese)
|
[35] |
高镇同. 航空金属材料疲劳性能手册. 北京: 北京航空材料研究所, 1981: 97-127 (Gao Zhentong. Manual on Fatigue Properties of Aviation Metal Materials. Beijing: Beijing Institute of Aeronautical Materials, 1981: 97-127 (in Chinese)
Gao Zhentong. Manual on Fatigue Properties of Aviation Metal Materials. Beijing: Beijing Institute of Aeronautical Materials, 1981: 97-127 (in Chinese)
|
[36] |
Illg W. Fatigue tests on notched and unnotched sheet specimens of 2024-T3 and 7075-T6 aluminum alloys and of SAE 4130 steel with special consideration of the life range from 2 to 10, 000 cycles. VA: Langley Aeronautical Laboratory Langley Field, 1956: 10-24
|
[37] |
Peng WW, Shen LJ, Shen Y, et al. Reliability analysis of repairable systems with recurrent misuse-induced failures and normal-operation failures. Reliability Engineering & System Safety, 2018, 171: 87-98
|
[38] |
Xu HW, Li W, Li MF, et al. Multidisciplinary robust design optimization based on time-varying sensitivity analysis. Journal of Mechanical Science and Technology, 2018, 32(3): 1195-1207 doi: 10.1007/s12206-018-0223-8
|
[1] | Xing Shibo, Shen Yongjun, Wu Tian. RESERACH ON DYNAMICAL CHARACTERISTICS OF PARALLEL-INERTER-BASED VIBRATION ISOLATOR CONSIDERING FRICTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(6): 1480-1492. DOI: 10.6052/0459-1879-25-045 |
[2] | Niu Jiangchuan, Zhang Wanjie, Shen Yongjun, Wang Jun. SUBHARMONIC RESONANCE OF QUASI-ZERO-STIFFNESS VIBRATION ISOLATION SYSTEM WITH DRY FRICTION DAMPER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1092-1101. DOI: 10.6052/0459-1879-21-680 |
[3] | Zhao Long, Lu Zeqi, Ding Hu, Chen Liqun. LOW-FREQUENCY VIBRATION ISOLATION AND ENERGY HARVESTING SIMULTANEOUSLY IMPLEMENTED BY A METAMATERIAL WITH LOCAL RESONANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2972-2983. DOI: 10.6052/0459-1879-21-471 |
[4] | Zhang Yuling, Gu Yongxia, Zhao Jieliang, Yan Shaoze. RESEARCH ON VIBRATION CHARACTERISTICS OF THE MANIPULATOR END UNDER ACTIVE CONTROL OF ARM STIFFNESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 985-995. DOI: 10.6052/0459-1879-20-075 |
[5] | Muqing Niu, Bintang Yang, Yikun Yang, Guang Meng, Liqun Chen. RESEARCH ON THE MAGNETO-MECHANICAL EFFECT IN ACTIVE AND PASSIVE MAGNETOSTRICTIVE VIBRATION ISOLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 324-332. DOI: 10.6052/0459-1879-18-254 |
[6] | Lu Zeqi, Chen Liqun. SOME RECENT PROGRESSES IN NONLINEAR PASSIVE ISOLATIONS OF VIBRATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 550-564. DOI: 10.6052/0459-1879-17-064 |
[7] | Gao Xue, Chen Qian, Liu Xianbin. NONLINEAR DYNAMICS DESIGN FOR PIECEWISE SMOOTH VIBRATION ISOLATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 192-200. DOI: 10.6052/0459-1879-15-099 |
[8] | Gao Yuan, Huang Biao, Wu Qin, Wang Guoyu. EXPERIMENTAL INVESTIGATION OF THE VIBRATION CHARACTERISTICS OF HYDROFOIL IN CAVITATING FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1009-1016. DOI: 10.6052/0459-1879-15-173 |
[9] | Wu Dafang, Zhao Shougen, Pan Bing, Wang Yuewu, Wang Jie, Mu Meng, Zhu Lin. EXPERIMENTAL STUDY ON HIGH TEMPERATURE THERMAL-VIBRATION CHARACTERISTICS FOR HOLLOW WING STRUCTURE OF HIGH-SPEED FLIGHT VEHICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 598-605. DOI: 10.6052/0459-1879-12-360 |
[10] | Dynamic properties of a class of vibration with isolator with solid-and-liquid mixture[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 253-258. DOI: 10.6052/0459-1879-2009-2-2008-059 |
1. |
卢传浩,周宇琦,曹勇,李杰,刘志芳,陈龙. 新型梯度连续可控夹层板抗冲击性能研究及优化. 力学学报. 2024(06): 1713-1726 .
![]() | |
2. |
冯学凯,王宝珍,巫绪涛,王选,郭煜. 新型节圆正弦蜂窝面内压缩力学性能研究. 力学学报. 2023(09): 1910-1920 .
![]() |