EI、Scopus 收录
中文核心期刊
Yin Yaode, Yu Hongjun. A phase field method for irradiation-thermal-mechanical coupling fracture of the dispersion nuclear fuel. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 173-182. DOI: 10.6052/0459-1879-24-407
Citation: Yin Yaode, Yu Hongjun. A phase field method for irradiation-thermal-mechanical coupling fracture of the dispersion nuclear fuel. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 173-182. DOI: 10.6052/0459-1879-24-407

A PHASE FIELD METHOD FOR IRRADIATION-THERMAL-MECHANICAL COUPLING FRACTURE OF THE DISPERSION NUCLEAR FUEL

  • Received Date: August 26, 2024
  • Accepted Date: October 06, 2024
  • Available Online: October 06, 2024
  • Published Date: October 06, 2024
  • Dispersion nuclear fuels have become a pivotal component in fourth-generation nuclear power technologies, and exhibit promising applications in the nuclear energy region due to their uniform fission reaction, small temperature gradients, and high burnup capabilities. With the increase of the design service life of nuclear fuel elements, a heightened demand for predicting the fracture and failure behaviors of the fuel element is proposed to avoid the leakage of nuclear fission products. The phase field fracture method is a recently developed computational fracture mechanics approach, and has achieved considerable success in predicting the fracture behaviors of complex solid media even under multi-physics conditions. In this work, we firstly propose an irradiation-thermal-mechanical coupling phase field model of dispersion nuclear fuels based on continuum thermodynamics in order to predict the fracture and heat transfer behaviors of the nuclear fuels under irradiation, thermal stress, and mechanical loadings. Subsequently, numerical simulations for the representative volume element and the entire plate of dispersion nuclear fuel in the pressurized water reactor environment are conducted. And the temperature field, the crack phase field and the hydrostatic stress field inside the dispersion nuclear fuel are obtained. The results reveal that dispersion nuclear fuels with uniform particle distribution exhibit relatively small temperature gradients. Notably, no phase field cracks are observed in the nuclear fuel matrix, and the damage of the dispersion nuclear fuel primarily manifests as the fracture of fuel particles. Many cracks nucleate at the edges of fuel particles, and then propagate inward the particle center. This work can provide an effective simulation method and numerical analysis basis for predicting the fracture behavior of dispersion nuclear fuel element.
  • [1]
    Savchenko A, Konovalov I, Vatulin A, et al. Dispersion type zirconium matrix fuels fabricated by capillary impregnation method. Journal of Nuclear Materials, 2007, 362(2): 356-363
    [2]
    Savchenko AM, Vatulin AV, Morozov AV, et al. Inert matrix fuel in dispersion type fuel elements. Journal of Nuclear Materials, 2006, 352(1): 372-377
    [3]
    舒瀚东, 周何, 马千驰等. U3O8/ZrN核壳结构微球制备及其在弥散型陶瓷核燃料中的应用研究. 中国陶瓷. 2024, 60(2): 45-52 (Shu Handong, Zhou He, Ma Qianchi, et al. Fabrication and application in dispersed ceramic nuclear fuel of U3O8/ZrN core-shell structure microspheres. China Ceramics, 2024, 60(2): 45-52 (in Chinese)

    Shu Handong, Zhou He, Ma Qianchi, et al. Fabrication and application in dispersed ceramic nuclear fuel of U3O8/ZrN core-shell structure microspheres. China Ceramics, 2024, 60(2): 45-52 (in Chinese)
    [4]
    严晓青. 弥散型核燃料板辐照力学行为的数值模拟. [硕士论文]. 上海: 复旦大学, 2009: 2-3 (Yan Xiaoqing. Numerical simulation researches on the irradiation-induced mechanical behaviors of dispersion nuclear plate. [Master Thesis]. Shanghai: Fudan University, 2009: 2-3 (in Chinese)

    Yan Xiaoqing. Numerical simulation researches on the irradiation-induced mechanical behaviors of dispersion nuclear plate. [Master Thesis]. Shanghai: Fudan University, 2009: 2-3 (in Chinese)
    [5]
    房玉良, 刘林, 孙海亮等. 核热推进反应堆燃料元件发展概述. 宇航总体技术, 2020, 4(1): 63-70 (Fang Yuliang, Liu Lin, Sun Hailiang, et al. Development of fuel elements in nuclear thermal propulsion system, Astronautical Systems Engineering Technology, 2020, 4(1): 63-70 (in Chinese)

    Fang Yuliang, Liu Lin, Sun Hailiang, et al. Development of fuel elements in nuclear thermal propulsion system, Astronautical Systems Engineering Technology, 2020, 4(1): 63-70 (in Chinese)
    [6]
    董颖璇, 吕俊男, 李群. 颗粒团聚行为对弥散型核燃料芯体失效的影响分析. 原子能科学技术, 2024, 58(4): 868-877 (Dong Yingxuan, Lyu Junnan, Li Qun. Analysis of particle agglomeration effect on failure of dispersion nuclear fuel meat. Atomic Energy Science and Technology, 2024, 58(4): 868-877 (in Chinese)

    Dong Yingxuan, Lyu Junnan, Li Qun. Analysis of particle agglomeration effect on failure of dispersion nuclear fuel meat. Atomic Energy Science and Technology, 2024, 58(4): 868-877 (in Chinese)
    [7]
    丁淑蓉, 龚辛, 赵云妹等. 弥散核燃料燃烧演化过程中的关键力学问题. 力学季刊, 2018, 39(1): 1-21 (Ding Shurong, Gong Xin, Zhao Yunmei, et al. Key mechanical problems in dispersion nuclear fuels during their burning evolution process. Chinese Quarterly of Mechanics, 2018, 39(1): 1-21 (in Chinese)

    Ding Shurong, Gong Xin, Zhao Yunmei, et al. Key mechanical problems in dispersion nuclear fuels during their burning evolution process. Chinese Quarterly of Mechanics, 2018, 39(1): 1-21 (in Chinese)
    [8]
    Zhang J, Wang H, Wei H, et al. Modelling of effective irradiation swelling for inert matrix fuels. Nuclear Engineering and Technology, 2021, 53(8): 2616-2628 doi: 10.1016/j.net.2021.02.019
    [9]
    Ding S, Huo Y, Yan X. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements. Journal of Nuclear Materials, 2009, 392(3): 498-504 doi: 10.1016/j.jnucmat.2009.04.015
    [10]
    Zhang J, Zhang J, Wang H, et al. Modeling of mesoscale creep behaviors and macroscale creep responses of composite fuels under irradiation conditions. Acta Mechanica Solida Sinica, 2022, 35(6): 1040-1054
    [11]
    Zhao Y, Gong X, Ding S, et al. A numerical method for simulating the non-homogeneous irradiation effects in full-sized dispersion nuclear fuel plates. International Journal of Mechanical Sciences, 2014, 81: 174-183 doi: 10.1016/j.ijmecsci.2014.02.012
    [12]
    Kadambi SB, Aagesen LK, Zhang Y, et al. Assessment of effective elastic constants of U-10Mo fuel: A multiscale modeling and homogenization study. Journal of Nuclear Materials, 2024, 599: 155225 doi: 10.1016/j.jnucmat.2024.155225
    [13]
    Francfort GA, Marigo JJ. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342 doi: 10.1016/S0022-5096(98)00034-9
    [14]
    Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797-826 doi: 10.1016/S0022-5096(99)00028-9
    [15]
    吴建营. 固体结构损伤破坏统一相场理论、算法和应用. 力学学报, 2021, 53(2): 301-329 (Wu Jianying. On the unified phase-field theory for damage and failure in solids and structures: Theoretical and numerical aspects. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301-329 (in Chinese) doi: 10.6052/0459-1879-20-295

    Wu Jianying. On the unified phase-field theory for damage and failure in solids and structures: Theoretical and numerical aspects. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301-329 (in Chinese) doi: 10.6052/0459-1879-20-295
    [16]
    Feng Y, Freddi F, Li J, et al. Phase-field model for 2D cohesive-frictional shear fracture: An energetic formulation. Journal of the Mechanics and Physics of Solids, 2024, 189: 105687 doi: 10.1016/j.jmps.2024.105687
    [17]
    Miehe C, Schänzel LM, Ulmer H. Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 449-485
    [18]
    Du C, Cui H, Zhang H. Thermal fatigue behaviors of thin-walled structures with holes: Experiments and phase field fracture modeling. International Journal of Fatigue, 2024, 185: 108338 doi: 10.1016/j.ijfatigue.2024.108338
    [19]
    Cui C, Ma R, Martínez-Pañeda E. A phase field formulation for dissolution-driven stress corrosion cracking. Journal of the Mechanics and Physics of Solids, 2021, 147: 104254
    [20]
    Guo Y, Na S. A reactive-transport phase-field modelling approach of chemo-assisted cracking in saturated sandstone. Computer Methods in Applied Mechanics and Engineering, 2024, 419: 116645 doi: 10.1016/j.cma.2023.116645
    [21]
    Li Y, Peng G, Tang J, et al. Thermo-hydro-mechanical coupling simulation for fracture propagation in CO2 fracturing based on phase-field model. Energy, 2023, 284: 128629 doi: 10.1016/j.energy.2023.128629
    [22]
    Liu SF, Wang W, Jia Y, et al. Modeling of hydro-mechanical coupled fracture propagation in quasi-brittle rocks using a variational phase-field method. Rock Mechanics and Rock Engineering, 2024, https://doi.org/10.1007/s00603-024-03896-5
    [23]
    Zhang S, Jiang W, Gamble KA, et al. Comparing the impact of thermal stresses and bubble pressure on intergranular fracture in UO2 using 2D phase field fracture simulations. Journal of Nuclear Materials, 2023, 574: 154158 doi: 10.1016/j.jnucmat.2022.154158
    [24]
    Jiang W, Hu T, Aagesen LK, et al. A phase-field model of quasi-brittle fracture for pressurized cracks: Application to UO2 high-burnup microstructure fragmentation. Theoretical and Applied Fracture Mechanics, 2022, 119: 103348 doi: 10.1016/j.tafmec.2022.103348
    [25]
    Chakraborty P, Sabharwall P, Carroll MC. A phase-field approach to model multi-axial and microstructure dependent fracture in nuclear grade graphite. Journal of Nuclear Materials, 2016, 475: 200-208 doi: 10.1016/j.jnucmat.2016.04.006
    [26]
    Li W, Shirvan K. Multiphysics phase-field modeling of quasi-static cracking in urania ceramic nuclear fuel. Ceramics International, 2021, 47(1): 793-810 doi: 10.1016/j.ceramint.2020.08.191
    [27]
    Tan J, Wu Y, Li Q, et al. Phase field modeling of irradiation-induced shrinkage fracture in TRISO fuel particle. Journal of Nuclear Materials, 2024, 592: 154963 doi: 10.1016/j.jnucmat.2024.154963
    [28]
    Gurtin ME. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D: Nonlinear Phenomena, 1996, 92(3): 178-192
    [29]
    Coleman BD, Noll W. Foundations of linear viscoelasticity. Reviews of Modern Physics, 1961, 33(2): 239-249 doi: 10.1103/RevModPhys.33.239
    [30]
    Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45): 2765-2778
    [31]
    Wu JY. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids, 2017, 103: 72-99 doi: 10.1016/j.jmps.2017.03.015
    [32]
    Pham K, Amor H, Marigo JJ, et al. Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics, 2011, 20(4): 618-652 doi: 10.1177/1056789510386852
    [33]
    Tanné E, Li T, Bourdin B, et al. Crack nucleation in variational phase-field models of brittle fracture. Journal of the Mechanics and Physics of Solids, 2018, 110: 80-99 doi: 10.1016/j.jmps.2017.09.006
    [34]
    Ruan H, Rezaei S, Yang Y, et al. A thermo-mechanical phase-field fracture model: Application to hot cracking simulations in additive manufacturing. Journal of the Mechanics and Physics of Solids, 2023, 172: 105169 doi: 10.1016/j.jmps.2022.105169
    [35]
    Naderi M, Amiri M, Khonsari MM. On the thermodynamic entropy of fatigue fracture. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466(2114): 423-438 doi: 10.1098/rspa.2009.0348
    [36]
    Lucuta PG, Matzke H, Hastings IJ. A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: Review and recommendations. Journal of Nuclear Materials, 1996, 232(2): 166-180
    [37]
    Nakajima T, Ichikawa M, Iwano Y, et al. FEMAXI-III: A computer code for the analysis of thermal and mechanical behavior of fuel rods. Japan Atomic Energy Research Institute, 1985
    [38]
    Matzke H, Lucuta PG, Verrall RA, et al. Specific heat of UO2-based SIMFUEL. Journal of Nuclear Materials, 1997, 247: 121-126 doi: 10.1016/S0022-3115(97)00069-X
    [39]
    Luscher WG, Geelhood KJ. Material property correlations: Comparisons between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO. Pacific Northwest National Lab. (PNNL). Richland, WA, USA, 2010
    [40]
    Kang KH, Ryu HJ, Song KC. Thermal expansion of UO2 and simulated DUPIC fuel. Journal of Nuclear Materials, 2002, 301(2): 242-244
    [41]
    MacDonald PE, Thompson L. MATPRO: A handbook of materials properties for use in the analysis of light water reactor fuel rod behavior. SEE CODE-9502158 Aerojet Nuclear Co., Idaho Falls, Idaho, USA. 1976
    [42]
    Fisher E, Renken CJ. Single-crystal elastic moduli and the hcp→ bcc transformation in Ti, Zr, and Hf. Physical Review, 1964, 135(2A): A482 doi: 10.1103/PhysRev.135.A482
    [43]
    Springer GŚ, Wingeier EW. Thermal conductivity of neon, argon, and xenon at high temperatures. The Journal of Chemical Physics, 1973, 59(5): 2747-2750 doi: 10.1063/1.1680394
    [44]
    Linstrom PJ, Mallard WG. The NIST Chemistry WebBook: A chemical data resource on the internet. Journal of Chemical & Engineering Data, 2001, 46(5): 1059-1063
    [45]
    Permann CJ, Gaston DR, Andrš D, et al. MOOSE: Enabling massively parallel multiphysics simulation. SoftwareX, 2020, 11: 100430 doi: 10.1016/j.softx.2020.100430
    [46]
    Gerasimov T, De Lorenzis L. On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 990-1026 doi: 10.1016/j.cma.2019.05.038
    [47]
    Chao Correas A, Reinoso J, Cornetti P, et al. On the (lack of) representativeness of quasi-static variational fracture models for unstable crack propagation. Journal of the Mechanics and Physics of Solids, 2024, 186: 105573 doi: 10.1016/j.jmps.2024.105573
    [48]
    Wu JY, Yao JR. A model scaling approach for fracture and size effect simulations in solids: Cohesive zone, smeared crack band and phase-field models. Computer Methods in Applied Mechanics and Engineering, 2022, 400: 115519
    [49]
    Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311 doi: 10.1002/nme.2861
    [50]
    Borden MJ, Verhoosel CV, Scott MA, et al. A phase-field description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering, 2012, 217-220: 77-95 doi: 10.1016/j.cma.2012.01.008
    [51]
    吕俊男, 杨烁, 赵毅等. 高燃耗下核燃料颗粒内部的应力状态及关键影响因素研究. 原子能科学技术, 2022, 56(12): 2646-2653 (Lyu Junnan, Yang Shuo, Zhao Yi, et al. Stress state and key influencing factor in high burnup nuclear fuel particle. Atomic Energy Science and Technology, 2022, 56(12): 2646-2653 (in Chinese) doi: 10.7538/yzk.2021.youxian.0374

    Lyu Junnan, Yang Shuo, Zhao Yi, et al. Stress state and key influencing factor in high burnup nuclear fuel particle. Atomic Energy Science and Technology, 2022, 56(12): 2646-2653 (in Chinese) doi: 10.7538/yzk.2021.youxian.0374
  • Related Articles

    [1]Kong Lingfa, Dong Yidao, Liu Wei. THE INFLUENCE OF GLOBAL-DIRECTION STENCIL ON GRADIENT AND HIGH-ORDER DERIVATIVES RECONSTRUCTION OF UNSTRUCTURED FINITE VOLUME METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1334-1349. DOI: 10.6052/0459-1879-20-093
    [2]Chen Shaolin, Guo Qichao, Zhou Guoliang. PARTITIONED HYBRID METHOD FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF NUCLEAR POWER STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 258-282. DOI: 10.6052/0459-1879-19-271
    [3]Nianhua Wang, Xinghua Chang, Rong Ma, Laiping Zhang. VERIFICATION AND VALIDATION OF HYPERFLOW SOLVER FOR SUBSONIC AND TRANSONIC TURBULENT FLOW SIMULATIONS ON UNSTRUCTURED/HYBRID GRIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 813-825. DOI: 10.6052/0459-1879-18-331
    [4]Wan Yunbo, Ma Rong, Wang Nianhua, Zhang Laiping, Gui Yewei. ACCURATE AERO-HEATING PREDICTIONS BASED ON MUL-TI-DIMENSIONAL GRADIENT RECONSTRUCTION ON HYBRID UNSTRUCTURED GRIDS1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1003-1012. DOI: 10.6052/0459-1879-18-082
    [5]Qin Wanglong, Lü Hongqiang, Wu Yizhao. HIGH-ORDER DISCONTINUOUS GALERKIN SOLUTION OF N-S EQUATIONS ON HYBRID MESH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 987-991. DOI: 10.6052/0459-1879-13-151
    [6]He Lixin. A class of discontinuous galerkin/finite volume hybrid schemes based on the ``static re-construction'' and ``dynamic re-construction''[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1013-1022. DOI: 10.6052/0459-1879-2010-6-lxxb2009-514
    [7]Laiping Zhang, Xinghua Chang, Xupeng Duan, Zhenya Wang, Hanxin Zhang. Implicit algorithm based on dynamic hybrid mesh for incompressible unsteady flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 577-586. DOI: 10.6052/0459-1879-2007-5-2006-397
    [8]Hybrid moving grid generation and implicit algorithm for unsteady flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(6): 664-672. DOI: 10.6052/0459-1879-2004-6-2003-157
    [9]A CARTESIAN/TRIANGULAR HYBRID GRID SOLVER FOR COMPLEX INVISCID FLOW FIELDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(1): 104-108. DOI: 10.6052/0459-1879-1998-1-1995-104
    [10]SOLUTION OF N S EQUATIONS ON UNSTRUCTURED GRID[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(6): 641-650. DOI: 10.6052/0459-1879-1996-6-1995-383
  • Cited by

    Periodical cited type(6)

    1. 杜一鸣,麻彤,邱福生,陈祖昌. 国家数值风洞风雷软件结构/非结构混合网格同构计算特性. 气动研究与试验. 2024(05): 22-39 .
    2. 陈江涛,肖维,赵炜,张培红,杨福军,金韬,郭勇颜,吴晓军,陈坚强,王瑞利,李立. 计算流体力学验证与确认研究进展. 力学进展. 2023(03): 626-660 .
    3. 李鲁彦,李醒飞,姜明波,杨少波. 深海自持式剖面浮标水动力特性分析. 海洋湖沼通报. 2021(04): 46-54 .
    4. 黄灿,刘青泉,王晓亮. 梯级溃坝洪水洪峰增强机制. 力学学报. 2020(03): 645-655 . 本站查看
    5. 陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型. 力学学报. 2020(05): 1314-1322 . 本站查看
    6. 孔令发,董义道,刘伟. 全局方向模板对非结构有限体积梯度与高阶导数重构的影响. 力学学报. 2020(05): 1334-1349 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (175) PDF downloads (81) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return