Citation: | Yin Yaode, Yu Hongjun. A phase field method for irradiation-thermal-mechanical coupling fracture of the dispersion nuclear fuel. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 173-182. DOI: 10.6052/0459-1879-24-407 |
[1] |
Savchenko A, Konovalov I, Vatulin A, et al. Dispersion type zirconium matrix fuels fabricated by capillary impregnation method. Journal of Nuclear Materials, 2007, 362(2): 356-363
|
[2] |
Savchenko AM, Vatulin AV, Morozov AV, et al. Inert matrix fuel in dispersion type fuel elements. Journal of Nuclear Materials, 2006, 352(1): 372-377
|
[3] |
舒瀚东, 周何, 马千驰等. U3O8/ZrN核壳结构微球制备及其在弥散型陶瓷核燃料中的应用研究. 中国陶瓷. 2024, 60(2): 45-52 (Shu Handong, Zhou He, Ma Qianchi, et al. Fabrication and application in dispersed ceramic nuclear fuel of U3O8/ZrN core-shell structure microspheres. China Ceramics, 2024, 60(2): 45-52 (in Chinese)
Shu Handong, Zhou He, Ma Qianchi, et al. Fabrication and application in dispersed ceramic nuclear fuel of U3O8/ZrN core-shell structure microspheres. China Ceramics, 2024, 60(2): 45-52 (in Chinese)
|
[4] |
严晓青. 弥散型核燃料板辐照力学行为的数值模拟. [硕士论文]. 上海: 复旦大学, 2009: 2-3 (Yan Xiaoqing. Numerical simulation researches on the irradiation-induced mechanical behaviors of dispersion nuclear plate. [Master Thesis]. Shanghai: Fudan University, 2009: 2-3 (in Chinese)
Yan Xiaoqing. Numerical simulation researches on the irradiation-induced mechanical behaviors of dispersion nuclear plate. [Master Thesis]. Shanghai: Fudan University, 2009: 2-3 (in Chinese)
|
[5] |
房玉良, 刘林, 孙海亮等. 核热推进反应堆燃料元件发展概述. 宇航总体技术, 2020, 4(1): 63-70 (Fang Yuliang, Liu Lin, Sun Hailiang, et al. Development of fuel elements in nuclear thermal propulsion system, Astronautical Systems Engineering Technology, 2020, 4(1): 63-70 (in Chinese)
Fang Yuliang, Liu Lin, Sun Hailiang, et al. Development of fuel elements in nuclear thermal propulsion system, Astronautical Systems Engineering Technology, 2020, 4(1): 63-70 (in Chinese)
|
[6] |
董颖璇, 吕俊男, 李群. 颗粒团聚行为对弥散型核燃料芯体失效的影响分析. 原子能科学技术, 2024, 58(4): 868-877 (Dong Yingxuan, Lyu Junnan, Li Qun. Analysis of particle agglomeration effect on failure of dispersion nuclear fuel meat. Atomic Energy Science and Technology, 2024, 58(4): 868-877 (in Chinese)
Dong Yingxuan, Lyu Junnan, Li Qun. Analysis of particle agglomeration effect on failure of dispersion nuclear fuel meat. Atomic Energy Science and Technology, 2024, 58(4): 868-877 (in Chinese)
|
[7] |
丁淑蓉, 龚辛, 赵云妹等. 弥散核燃料燃烧演化过程中的关键力学问题. 力学季刊, 2018, 39(1): 1-21 (Ding Shurong, Gong Xin, Zhao Yunmei, et al. Key mechanical problems in dispersion nuclear fuels during their burning evolution process. Chinese Quarterly of Mechanics, 2018, 39(1): 1-21 (in Chinese)
Ding Shurong, Gong Xin, Zhao Yunmei, et al. Key mechanical problems in dispersion nuclear fuels during their burning evolution process. Chinese Quarterly of Mechanics, 2018, 39(1): 1-21 (in Chinese)
|
[8] |
Zhang J, Wang H, Wei H, et al. Modelling of effective irradiation swelling for inert matrix fuels. Nuclear Engineering and Technology, 2021, 53(8): 2616-2628 doi: 10.1016/j.net.2021.02.019
|
[9] |
Ding S, Huo Y, Yan X. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements. Journal of Nuclear Materials, 2009, 392(3): 498-504 doi: 10.1016/j.jnucmat.2009.04.015
|
[10] |
Zhang J, Zhang J, Wang H, et al. Modeling of mesoscale creep behaviors and macroscale creep responses of composite fuels under irradiation conditions. Acta Mechanica Solida Sinica, 2022, 35(6): 1040-1054
|
[11] |
Zhao Y, Gong X, Ding S, et al. A numerical method for simulating the non-homogeneous irradiation effects in full-sized dispersion nuclear fuel plates. International Journal of Mechanical Sciences, 2014, 81: 174-183 doi: 10.1016/j.ijmecsci.2014.02.012
|
[12] |
Kadambi SB, Aagesen LK, Zhang Y, et al. Assessment of effective elastic constants of U-10Mo fuel: A multiscale modeling and homogenization study. Journal of Nuclear Materials, 2024, 599: 155225 doi: 10.1016/j.jnucmat.2024.155225
|
[13] |
Francfort GA, Marigo JJ. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342 doi: 10.1016/S0022-5096(98)00034-9
|
[14] |
Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797-826 doi: 10.1016/S0022-5096(99)00028-9
|
[15] |
吴建营. 固体结构损伤破坏统一相场理论、算法和应用. 力学学报, 2021, 53(2): 301-329 (Wu Jianying. On the unified phase-field theory for damage and failure in solids and structures: Theoretical and numerical aspects. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301-329 (in Chinese) doi: 10.6052/0459-1879-20-295
Wu Jianying. On the unified phase-field theory for damage and failure in solids and structures: Theoretical and numerical aspects. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301-329 (in Chinese) doi: 10.6052/0459-1879-20-295
|
[16] |
Feng Y, Freddi F, Li J, et al. Phase-field model for 2D cohesive-frictional shear fracture: An energetic formulation. Journal of the Mechanics and Physics of Solids, 2024, 189: 105687 doi: 10.1016/j.jmps.2024.105687
|
[17] |
Miehe C, Schänzel LM, Ulmer H. Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 449-485
|
[18] |
Du C, Cui H, Zhang H. Thermal fatigue behaviors of thin-walled structures with holes: Experiments and phase field fracture modeling. International Journal of Fatigue, 2024, 185: 108338 doi: 10.1016/j.ijfatigue.2024.108338
|
[19] |
Cui C, Ma R, Martínez-Pañeda E. A phase field formulation for dissolution-driven stress corrosion cracking. Journal of the Mechanics and Physics of Solids, 2021, 147: 104254
|
[20] |
Guo Y, Na S. A reactive-transport phase-field modelling approach of chemo-assisted cracking in saturated sandstone. Computer Methods in Applied Mechanics and Engineering, 2024, 419: 116645 doi: 10.1016/j.cma.2023.116645
|
[21] |
Li Y, Peng G, Tang J, et al. Thermo-hydro-mechanical coupling simulation for fracture propagation in CO2 fracturing based on phase-field model. Energy, 2023, 284: 128629 doi: 10.1016/j.energy.2023.128629
|
[22] |
Liu SF, Wang W, Jia Y, et al. Modeling of hydro-mechanical coupled fracture propagation in quasi-brittle rocks using a variational phase-field method. Rock Mechanics and Rock Engineering, 2024, https://doi.org/10.1007/s00603-024-03896-5
|
[23] |
Zhang S, Jiang W, Gamble KA, et al. Comparing the impact of thermal stresses and bubble pressure on intergranular fracture in UO2 using 2D phase field fracture simulations. Journal of Nuclear Materials, 2023, 574: 154158 doi: 10.1016/j.jnucmat.2022.154158
|
[24] |
Jiang W, Hu T, Aagesen LK, et al. A phase-field model of quasi-brittle fracture for pressurized cracks: Application to UO2 high-burnup microstructure fragmentation. Theoretical and Applied Fracture Mechanics, 2022, 119: 103348 doi: 10.1016/j.tafmec.2022.103348
|
[25] |
Chakraborty P, Sabharwall P, Carroll MC. A phase-field approach to model multi-axial and microstructure dependent fracture in nuclear grade graphite. Journal of Nuclear Materials, 2016, 475: 200-208 doi: 10.1016/j.jnucmat.2016.04.006
|
[26] |
Li W, Shirvan K. Multiphysics phase-field modeling of quasi-static cracking in urania ceramic nuclear fuel. Ceramics International, 2021, 47(1): 793-810 doi: 10.1016/j.ceramint.2020.08.191
|
[27] |
Tan J, Wu Y, Li Q, et al. Phase field modeling of irradiation-induced shrinkage fracture in TRISO fuel particle. Journal of Nuclear Materials, 2024, 592: 154963 doi: 10.1016/j.jnucmat.2024.154963
|
[28] |
Gurtin ME. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D: Nonlinear Phenomena, 1996, 92(3): 178-192
|
[29] |
Coleman BD, Noll W. Foundations of linear viscoelasticity. Reviews of Modern Physics, 1961, 33(2): 239-249 doi: 10.1103/RevModPhys.33.239
|
[30] |
Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45): 2765-2778
|
[31] |
Wu JY. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids, 2017, 103: 72-99 doi: 10.1016/j.jmps.2017.03.015
|
[32] |
Pham K, Amor H, Marigo JJ, et al. Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics, 2011, 20(4): 618-652 doi: 10.1177/1056789510386852
|
[33] |
Tanné E, Li T, Bourdin B, et al. Crack nucleation in variational phase-field models of brittle fracture. Journal of the Mechanics and Physics of Solids, 2018, 110: 80-99 doi: 10.1016/j.jmps.2017.09.006
|
[34] |
Ruan H, Rezaei S, Yang Y, et al. A thermo-mechanical phase-field fracture model: Application to hot cracking simulations in additive manufacturing. Journal of the Mechanics and Physics of Solids, 2023, 172: 105169 doi: 10.1016/j.jmps.2022.105169
|
[35] |
Naderi M, Amiri M, Khonsari MM. On the thermodynamic entropy of fatigue fracture. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466(2114): 423-438 doi: 10.1098/rspa.2009.0348
|
[36] |
Lucuta PG, Matzke H, Hastings IJ. A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: Review and recommendations. Journal of Nuclear Materials, 1996, 232(2): 166-180
|
[37] |
Nakajima T, Ichikawa M, Iwano Y, et al. FEMAXI-III: A computer code for the analysis of thermal and mechanical behavior of fuel rods. Japan Atomic Energy Research Institute, 1985
|
[38] |
Matzke H, Lucuta PG, Verrall RA, et al. Specific heat of UO2-based SIMFUEL. Journal of Nuclear Materials, 1997, 247: 121-126 doi: 10.1016/S0022-3115(97)00069-X
|
[39] |
Luscher WG, Geelhood KJ. Material property correlations: Comparisons between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO. Pacific Northwest National Lab. (PNNL). Richland, WA, USA, 2010
|
[40] |
Kang KH, Ryu HJ, Song KC. Thermal expansion of UO2 and simulated DUPIC fuel. Journal of Nuclear Materials, 2002, 301(2): 242-244
|
[41] |
MacDonald PE, Thompson L. MATPRO: A handbook of materials properties for use in the analysis of light water reactor fuel rod behavior. SEE CODE-9502158 Aerojet Nuclear Co., Idaho Falls, Idaho, USA. 1976
|
[42] |
Fisher E, Renken CJ. Single-crystal elastic moduli and the hcp→ bcc transformation in Ti, Zr, and Hf. Physical Review, 1964, 135(2A): A482 doi: 10.1103/PhysRev.135.A482
|
[43] |
Springer GŚ, Wingeier EW. Thermal conductivity of neon, argon, and xenon at high temperatures. The Journal of Chemical Physics, 1973, 59(5): 2747-2750 doi: 10.1063/1.1680394
|
[44] |
Linstrom PJ, Mallard WG. The NIST Chemistry WebBook: A chemical data resource on the internet. Journal of Chemical & Engineering Data, 2001, 46(5): 1059-1063
|
[45] |
Permann CJ, Gaston DR, Andrš D, et al. MOOSE: Enabling massively parallel multiphysics simulation. SoftwareX, 2020, 11: 100430 doi: 10.1016/j.softx.2020.100430
|
[46] |
Gerasimov T, De Lorenzis L. On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 990-1026 doi: 10.1016/j.cma.2019.05.038
|
[47] |
Chao Correas A, Reinoso J, Cornetti P, et al. On the (lack of) representativeness of quasi-static variational fracture models for unstable crack propagation. Journal of the Mechanics and Physics of Solids, 2024, 186: 105573 doi: 10.1016/j.jmps.2024.105573
|
[48] |
Wu JY, Yao JR. A model scaling approach for fracture and size effect simulations in solids: Cohesive zone, smeared crack band and phase-field models. Computer Methods in Applied Mechanics and Engineering, 2022, 400: 115519
|
[49] |
Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311 doi: 10.1002/nme.2861
|
[50] |
Borden MJ, Verhoosel CV, Scott MA, et al. A phase-field description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering, 2012, 217-220: 77-95 doi: 10.1016/j.cma.2012.01.008
|
[51] |
吕俊男, 杨烁, 赵毅等. 高燃耗下核燃料颗粒内部的应力状态及关键影响因素研究. 原子能科学技术, 2022, 56(12): 2646-2653 (Lyu Junnan, Yang Shuo, Zhao Yi, et al. Stress state and key influencing factor in high burnup nuclear fuel particle. Atomic Energy Science and Technology, 2022, 56(12): 2646-2653 (in Chinese) doi: 10.7538/yzk.2021.youxian.0374
Lyu Junnan, Yang Shuo, Zhao Yi, et al. Stress state and key influencing factor in high burnup nuclear fuel particle. Atomic Energy Science and Technology, 2022, 56(12): 2646-2653 (in Chinese) doi: 10.7538/yzk.2021.youxian.0374
|
1. |
李恒,金科,寇勇,李凯,王斌,叶柳青. 一种高效的霍尔电场数值模拟方法. 力学学报. 2025(01): 79-88 .
![]() |