Citation: | Li Yuexiao, Shi Weikang, Wu Wei, Huang Tenglong, Zhang Jiazhong. Study on energy band structures and its dynamics characteristics in cyclic-periodic symmetric structures. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 199-211. DOI: 10.6052/0459-1879-24-369 |
[1] |
Zhang JZ. Dynamics and Fault Diagnosis of Nonlinear Rotors and Impellers. Cham: Springer Nature Switzerland AG, 2022
|
[2] |
高锋, 马杰. 200MW机组叶片断裂分析与控制//全国火电100-200 MW级机组技术协作会年会论文集. 桂林: 中国电力企业联合会, 2009: 46-51 (Gao Feng, Ma Jie. Analysis and control of blade fracture in a 200MW unit//Proceedings of the 2009 Annual Conference of the National Technical Cooperation Conference for 100-200 MW Thermal Power Units. Guilin: China Electricity Council, 2009: 46-51 (in Chinese)
Gao Feng, Ma Jie. Analysis and control of blade fracture in a 200MW unit//Proceedings of the 2009 Annual Conference of the National Technical Cooperation Conference for 100-200 MW Thermal Power Units. Guilin: China Electricity Council, 2009: 46-51 (in Chinese)
|
[3] |
赵问银, 张家忠, 周成武. 大型离心叶轮振动模态局部化特性研究. 应用力学学报, 2012, 29(6): 699-704, 775 (Zhao Wenyin, Zhang Jiazhong, Zhou Chengwu. Study on vibration mode localization characteristics of large centrifugal impeller. Chinese Journal of Applied Mechanics, 2012, 29(6): 699-704, 775 (in Chinese)
Zhao Wenyin, Zhang Jiazhong, Zhou Chengwu. Study on vibration mode localization characteristics of large centrifugal impeller. Chinese Journal of Applied Mechanics, 2012, 29(6): 699-704, 775 (in Chinese)
|
[4] |
Pal RK, Ruzzene M. Edge waves in plates with resonators: An elastic analogue of the quantum valley hall effect. New Journal of Physics, 2016, 19(2): 025001
|
[5] |
Andrea C, Craster R, Daniel C, et al. Elastic wave controlbeyond band-gaps: Shaping the flow of waves in plates and half-spaces with subwavelength resonant rods. Frontiers in Mechanical Engineering, 2017, 3: 10 doi: 10.3389/fmech.2017.00010
|
[6] |
Anufriev R, Yanagisawa R, Nomura M. Aluminium nanopillars reduce thermal conductivity of silicon nanobeams. Nanoscale, 2017, 9(39): 15083 doi: 10.1039/C7NR05114J
|
[7] |
Chaunsali R, Chen CW, Yang J. Subwavelength and directional control of flexural waves in zone-folding induced topological plates. Physical Review B, 2018, 97(5): 054307 doi: 10.1103/PhysRevB.97.054307
|
[8] |
Chen HF, Fu Y, Ling L, et al. Design of locally resonant acoustic metamaterials with specified band gaps using multi-material topology optimization. Materials, 2024, 17(14): 3591 doi: 10.3390/ma17143591
|
[9] |
Wang C, Zhao HG, Wang Y, et al. Topology optimization of chiral metamaterials with application to underwater sound insulation. Applied Mathematics and Mechanics, 2024, 45(7): 1119-1138 doi: 10.1007/s10483-024-3162-8
|
[10] |
Xin JY, Li YJ, Li DX, et al. Comprehensive analysis of band gap modulation of hexagonal fan blade and optimized ligament structure in the low-frequency range. Micro and Nanostructures, 2024, 193: 207918 doi: 10.1016/j.micrna.2024.207918
|
[11] |
Li ZH, Yang SJ, Liu Q, et al. A novel sandwich structure for integrated sound insulation and absorption. International Journal of Mechanical Sciences, 2024, 279: 109526 doi: 10.1016/j.ijmecsci.2024.109526
|
[12] |
Alicia G, Roger R, James W, et al. An adjustable acoustic metamaterial cell using a magnetic membrane for tunable resonance. Scientific Reports, 2024, 14(1): 15044 doi: 10.1038/s41598-024-65819-2
|
[13] |
Cao W, Shi J, Xiong R, et al. Thermal transport in 2D nanophononic metamaterials embedded with cylindrical arrays. Physics Letters A, 2023, 481: 128997 doi: 10.1016/j.physleta.2023.128997
|
[14] |
Sigalas MM, Economou EN. Elastic and acoustic wave band structure. Journal of Sound and Vibration, 1992, 158(2): 377-382 doi: 10.1016/0022-460X(92)90059-7
|
[15] |
Kushwaha MS, Halevi P, Dobrzynski L, et al. Acoustic band structure of periodic elastic composites. Physical Review Letters, 1993, 71(13): 2022-2025 doi: 10.1103/PhysRevLett.71.2022
|
[16] |
Jin Y, Djafari-Rouhani B, Torrent D. Gradient index phononic crystals and metamaterials. Nanophotonic, 2018, 8(5): 683-701
|
[17] |
温熙森. 声子晶体. 北京: 国防工业出版社, 2009 (Wen Xisen. Phononic Crystals. Beijing: National Defense Industry Press, 2009 (in Chinese)
Wen Xisen. Phononic Crystals. Beijing: National Defense Industry Press, 2009 (in Chinese)
|
[18] |
高南沙, 沈礼, 侯宏. 声子晶体减振降噪特性分析研究及应用. 西安: 西北工业大学出版社, 2017 (Gao Nansha, Shen Li, Hou Hong. Analysis and Application of the Vibration and Noise Reduction Properties of Phononic Crystals. Xi’an: Northwestern Polytechnical University Press, 2017 (in Chinese)
Gao Nansha, Shen Li, Hou Hong. Analysis and Application of the Vibration and Noise Reduction Properties of Phononic Crystals. Xi’an: Northwestern Polytechnical University Press, 2017 (in Chinese)
|
[19] |
Liu ZY, Zhang XX, Mao YW, et al. Locally resonant sonic materials. Science, 2000, 289(5485): 1734-1736 doi: 10.1126/science.289.5485.1734
|
[20] |
Wang G, Liu YZ, Wen JH, et al. Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals. Chinese Physics, 2006, 15(2): 407-411 doi: 10.1088/1009-1963/15/2/029
|
[21] |
Yu DL, Liu YZ, Qiu J, et al. Experimental and theoretical research on the vibrational gaps in two-dimensional three-component composite thin plates. Chinese Physics Letters, 2005, 22(8): 1958 doi: 10.1088/0256-307X/22/8/038
|
[22] |
Hsu JC, Wu TT. Lamb waves in binary locally resonant phononic plates with two-dimensional lattices. Applied Physics Letters, 2007, 90(20): 201904 doi: 10.1063/1.2739369
|
[23] |
Assouar MB, Oudich M. Enlargement of a locally resonant sonic band gap by using double-sides stubbed phononic plates. Applied Physics Letters, 2012, 100(12): 123506
|
[24] |
Serrano Ó, Zaera R, Fernández-Sáez J. Band structure analysis of a thin plate with periodic arrangements of slender beams. Journal of Sound and Vibration, 2018, 420: 330-345 doi: 10.1016/j.jsv.2017.11.016
|
[25] |
董立强. 一维广义声子晶体圆板振动特性研究. [硕士论文]. 哈尔滨: 哈尔滨工程大学, 2015 (Dong Liqiang. Research on vibrational characteristics of circular plate of generalized phononic crystals. [Master Thesis]. Harbin: Harbin Engineering University, 2015 (in Chinese)
Dong Liqiang. Research on vibrational characteristics of circular plate of generalized phononic crystals. [Master Thesis]. Harbin: Harbin Engineering University, 2015 (in Chinese)
|
[26] |
罗金雨, 姚凌云, 江国期等. 一种圆柱壳类声子晶体振动带隙及振动特性研究. 振动与冲击, 2019, 38(8): 133-138 (Luo Jinyu, Yao Lingyun, Jiang Guoqi, et al. A study on the vibration band gap and vibration characteristics of a cylindrical shell phononic crystal. Journal of Vibration and Shock, 2019, 38(8): 133-138 (in Chinese)
Luo Jinyu, Yao Lingyun, Jiang Guoqi, et al. A study on the vibration band gap and vibration characteristics of a cylindrical shell phononic crystal. Journal of Vibration and Shock, 2019, 38(8): 133-138 (in Chinese)
|
[27] |
黄洪赛, 冉冀林, 陈凯伦等. 局域共振型圆柱壳类声子晶体带隙特性研究. 人工晶体学报, 2020, 49(6): 1078-1082, 1106 (Huang Hongsai, Ran Jilin, Chen Kailun, et al. Study on band gap of locally resonant cylindrical shell phononic crystals. Journal of Synthetic Crystals, 2020, 49(6): 1078-1082, 1106 (in Chinese)
Huang Hongsai, Ran Jilin, Chen Kailun, et al. Study on band gap of locally resonant cylindrical shell phononic crystals. Journal of Synthetic Crystals, 2020, 49(6): 1078-1082, 1106 (in Chinese)
|
[28] |
姚凌云, 姚敦辉. 圆柱壳弹性波超材料分级排列的带隙拓宽方法研究. 动力学与控制学报, 2023, 21(7): 38-42 (Yao Lingyun, Yao Dunhui. On the cell-dependent vibrations and wave propagation in uniperiodic cylindrical shells. Journal of Dynamics and Control, 2023, 21(7): 38-42 (in Chinese)
Yao Lingyun, Yao Dunhui. On the cell-dependent vibrations and wave propagation in uniperiodic cylindrical shells. Journal of Dynamics and Control, 2023, 21(7): 38-42 (in Chinese)
|
[29] |
毕红霞, 王艾伦, 曹旭辉. 基于应变模态的自带冠叶盘结构振动局部化问题. 华东理工大学学报, 2012, 38(4): 524-528 (Bi Hongxia, Wang Ailun, Cao Xuhui. Vibration localization of bladed disk with shrouds based on strain model. Journal of East China University of Science and Technology, 2012, 38(4): 524-528 (in Chinese)
Bi Hongxia, Wang Ailun, Cao Xuhui. Vibration localization of bladed disk with shrouds based on strain model. Journal of East China University of Science and Technology, 2012, 38(4): 524-528 (in Chinese)
|
[30] |
王芳隆, 沈一舟, 徐艳龙等. 弯曲波彩虹捕获效应及其在能量俘获中的应用. 力学学报, 2022, 54(10): 2695-2707 (Wang Fanglong, Shen Yizhou, Xu Yanlong, et al. Rainbow trapping of flexural waves and its application in energy harvesting. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2695-2707 (in Chinese)
Wang Fanglong, Shen Yizhou, Xu Yanlong, et al. Rainbow trapping of flexural waves and its application in energy harvesting. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2695-2707 (in Chinese)
|
[31] |
吴锋. 快速计算随机声子晶体的局部化因子//第十一届全国随机振动理论与应用学术会议论文集. 北京, 2015: 1-8 (Wu Feng. Computing efficiently the localization factors for the random phononic crystals//Proceedings of the 11th National Conference on the Theory and Application of Random Vibration. Beijing, 2015: 1-8 (in Chinese)
Wu Feng. Computing efficiently the localization factors for the random phononic crystals//Proceedings of the 11th National Conference on the Theory and Application of Random Vibration. Beijing, 2015: 1-8 (in Chinese)
|
[32] |
Yao DH, Xiong MK, Luo JY, et al. Flexural wave mitigation in metamaterial cylindrical curved shells with periodic graded arrays of multi-resonator. Mechanical Systems and Signal Processing, 2022, 168: 108721 doi: 10.1016/j.ymssp.2021.108721
|
[33] |
Ma TX, Fan QS, Li ZY, et al. Flexural wave energy harvesting by multi-mode elastic metamaterial cavities. Extreme Mechanics Letters, 2020, 41: 101073 doi: 10.1016/j.eml.2020.101073
|
[34] |
Mannattil M, Santangelo CD. Geometric localization of waves on thin elastic structures. American Physical Society, 2024, 109(3): 035001
|