Citation: | Meng Xiang, Lu Zhaolin, Li Dong, Zhang Kai. An integral method for estimating wall friction velocity in turbulent boundary layers. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 43-54. DOI: 10.6052/0459-1879-24-343 |
[1] |
陶智, 马遥, 由儒全等. 边界层理论研究进展综述. 中国科学: 技术科学, 2024, 54(6): 979-1002 (Tao Zhi, Ma Yao, You Ruquan, et al. A review of the research progress of boundary layer theory. Scientia Sinica Technologica, 2024, 54(6): 979-1002 (in Chinese)
Tao Zhi, Ma Yao, You Ruquan, et al. A review of the research progress of boundary layer theory. Scientia Sinica Technologica, 2024, 54(6): 979-1002 (in Chinese)
|
[2] |
郑海涛, 刘建国, 罗涛等. 近海海洋边界层大气污染综合立体探测技术研究进展. 环境工程, 2024, 42(3): 1-16 (Zheng Haitao, Liu Jianguo, Luo Tao, et al. Research progress on integrated three-dimensional detection technology for atmospheric pollution in coastal ocean boundary layer. Environmental Engineering, 2024, 42(3): 1-16 (in Chinese)
Zheng Haitao, Liu Jianguo, Luo Tao, et al. Research progress on integrated three-dimensional detection technology for atmospheric pollution in coastal ocean boundary layer. Environmental Engineering, 2024, 42(3): 1-16 (in Chinese)
|
[3] |
王同光, 田琳琳, 钟伟等. 风能利用中的空气动力学研究进展Ⅱ: 入流和尾流特性. 空气动力学学报, 2022, 40(4): 22-50 (Wang Tongguang, Tian Linlin, Zhong Wei, et al. Aerodynamic research progress in wind energy Ⅱ: Inflow and wake characteristics. Acta Aerodynamica Sinica, 2022, 40(4): 22-50 (in Chinese)
Wang Tongguang, Tian Linlin, Zhong Wei, et al. Aerodynamic research progress in wind energy Ⅱ: Inflow and wake characteristics. Acta Aerodynamica Sinica, 2022, 40(4): 22-50 (in Chinese)
|
[4] |
郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战. 力学进展, 2020, 50: 1-49 (Zheng Xiaojing, Wang Guohua. Progresses and challenges of high Reynolds number wall-bounded turbulence. Advances in Mechanics, 2020, 50: 1-49 (in Chinese)
Zheng Xiaojing, Wang Guohua. Progresses and challenges of high Reynolds number wall-bounded turbulence. Advances in Mechanics, 2020, 50: 1-49 (in Chinese)
|
[5] |
Schultz MP, Bendick J, Holm E, et al. Economic impact of biofouling on a naval surface ship. Biofouling, 2011, 27(1): 87-98 doi: 10.1080/08927014.2010.542809
|
[6] |
Perlin M, Dowling DR, Ceccio SL. Freeman scholar review: Passive and active skin-friction drag reduction in turbulent boundary layers. Journal of Fluids Engineering, 2016, 138(9): 091104 doi: 10.1115/1.4033295
|
[7] |
Winter K. An outline of the techniques available for the measurement of skin friction in turbulent boundary layers. Progress in Aerospace Sciences, 1979, 18(1): 1-57
|
[8] |
Fernholz H, Janke G, Schober M, et al. New developments and applications of skin-friction measuring techniques. Measurement Science and Technology, 1996, 7(10): 1396 doi: 10.1088/0957-0233/7/10/010
|
[9] |
Naughton JW, Sheplak M. Modern developments in shear-stress measurement. Progress in Aerospace Sciences, 2002, 38(6-7): 515-570 doi: 10.1016/S0376-0421(02)00031-3
|
[10] |
Örlü R, Vinuesa R. Instantaneous wall-shear-stress measurements: Advances and application to near-wall extreme events. Measurement Science and Technology, 2020, 31(11): 112001 doi: 10.1088/1361-6501/aba06f
|
[11] |
高南, 刘玄鹤. 实用化壁面切应力测量技术的综述与展望. 空气动力学学报, 2023, 41(3): 1-24 (Gao Nan, Liu Xuanhe. A review of wall-shear-stress measurement techniques for practical applictions. Acta Aerodynamica Sinica, 2023, 41(3): 1-24 (in Chinese)
Gao Nan, Liu Xuanhe. A review of wall-shear-stress measurement techniques for practical applictions. Acta Aerodynamica Sinica, 2023, 41(3): 1-24 (in Chinese)
|
[12] |
Shen J, Pan C, Wang J. Accurate measurement of wall skin friction by single-pixel ensemble correlation. Science China Physics, Mechanics & Astronomy, 2014, 57(7): 1352-1362
|
[13] |
Kähler CJ, Scholz U, Ortmanns J. Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Experiments in Fluids, 2006, 41(2): 327-341 doi: 10.1007/s00348-006-0167-0
|
[14] |
Bailey S, Hultmark M, Monty JP, et al. Obtaining accurate mean velocity measurements in high Reynolds number turbulent boundary layers using Pitot tubes. Journal of Fluid Mechanics, 2013, 715: 642-670 doi: 10.1017/jfm.2012.538
|
[15] |
Vagt J, Fernholz H. Use of surface fences to measure wall shear stress in three-dimensional boundary layers. Aeronautical Quarterly, 1973, 24(2): 87-91 doi: 10.1017/S0001925900006478
|
[16] |
Marusic I, McKeon BJ, Monkewitz PA, et al. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Physics of Fluids, 2010, 22(6): 065103 doi: 10.1063/1.3453711
|
[17] |
Segalini A, Rüedi JD, Monkewitz PA. Systematic errors of skin-friction measurements by oil-film interferometry. Journal of Fluid Mechanics, 2015, 773: 298-326 doi: 10.1017/jfm.2015.237
|
[18] |
Ruedi J, Nagib H, Österlund J, et al. Evaluation of three techniques for wall-shear measurements in three-dimensional flows. Experiments in Fluids, 2003, 35(5): 389-396 doi: 10.1007/s00348-003-0650-9
|
[19] |
Ligrani P, Bradshaw P. Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Experiments in Fluids, 1987, 5(6): 407-417 doi: 10.1007/BF00264405
|
[20] |
Örlü R, Alfredsson PH. On spatial resolution issues related to time-averaged quantities using hot-wire anemometry. Experiments in Fluids, 2010, 49(1): 101-110 doi: 10.1007/s00348-009-0808-1
|
[21] |
Alfredsson PH, Örlü R, Schlatter P. The viscous sublayer revisited–exploiting self-similarity to determine the wall position and friction velocity. Experiments in Fluids, 2011, 51(1): 271-280 doi: 10.1007/s00348-011-1048-8
|
[22] |
Clauser FH. Turbulent boundary layers in adverse pressure gradients. Journal of the Aeronautical Sciences, 1954, 21(2): 91-108 doi: 10.2514/8.2938
|
[23] |
Nagib HM, Chauhan KA. Variations of von Kármán coefficient in canonical flows. Physics of Fluids, 2008, 20(10): 101518 doi: 10.1063/1.3006423
|
[24] |
Hites M, Nagib H, Wark C, et al. Velocity and wall shear-stress measurements in high-Reynolds-number turbulent boundary layers//28th Fluid Dynamics Conference, June 29-July 02, 1997, Snowmass Village, CO, USA, https://doi.org/10.2514/6.1997-1873
|
[25] |
Brzek B, Cal RB, Johansson G, et al. Inner and outer scalings in rough surface zero pressure gradient turbulent boundary layers. Physics of Fluids, 2007, 19(6): 065101 doi: 10.1063/1.2732439
|
[26] |
Ligrani PM, Moffat RJ. Structure of transitionally rough and fully rough turbulent boundary layers. Journal of Fluid Mechanics, 1986, 162: 69-98 doi: 10.1017/S0022112086001933
|
[27] |
Volino RJ, Schultz MP. Determination of wall shear stress from mean velocity and Reynolds shear stress profiles. Physical Review Fluids, 2018, 3(3): 034606 doi: 10.1103/PhysRevFluids.3.034606
|
[28] |
Xia Z, Zhang P, Yang XI. On skin friction in wall-bounded turbulence. Acta Mechanica Sinica, 2021, 37(4): 589-598 doi: 10.1007/s10409-020-01024-4
|
[29] |
Li D, Liu Y, Luo K, et al. An integral method to determine mean skin friction in turbulent boundary layers. Physics of Fluids, 2023, 35(3): 035127 doi: 10.1063/5.0142609
|
[30] |
Fukagata K, Iwamoto K, Kasagi N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Physics of Fluids, 2002, 14(11): L73-L76 doi: 10.1063/1.1516779
|
[31] |
Mehdi F, White CM. Integral form of the skin friction coefficient suitable for experimental data. Experiments in Fluids, 2011, 50(1): 43-51 doi: 10.1007/s00348-010-0893-1
|
[32] |
Mehdi F, Johansson TG, White CM, et al. On determining wall shear stress in spatially developing two-dimensional wall-bounded flows. Experiments in Fluids, 2013, 55(1): 1-9
|
[33] |
Kumar P, Mahesh K. Simple model for mean stress in turbulent boundary layers. Physical Review Fluids, 2021, 6(2): 024603 doi: 10.1103/PhysRevFluids.6.024603
|
[34] |
Chen X, She ZS. Analytic prediction for planar turbulent boundary layers. Science China Physics, Mechanics & Astronomy, 2016, 59(11): 114711
|
[35] |
Xia QJ, Huang WX, Xu CX, et al. Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dynamics Research, 2015, 47(2): 025503 doi: 10.1088/0169-5983/47/2/025503
|
[36] |
Hou Y, Somandepalli VS, Mungal M. A technique to determine total shear stress and polymer stress profiles in drag reduced boundary layer flows. Experiments in Fluids, 2006, 40(4): 589-600 doi: 10.1007/s00348-005-0098-1
|
[37] |
Schlatter P, Örlü R. Assessment of direct numerical simulation data of turbulent boundary layers. Journal of Fluid Mechanics, 2010, 659: 116-126 doi: 10.1017/S0022112010003113
|
[38] |
Chen X, Hussain F, She ZS. Non-universal scaling transition of momentum cascade in wall turbulence. Journal of Fluid Mechanics, 2019, 871: R2 doi: 10.1017/jfm.2019.309
|
[39] |
Sillero JA, Jiménez J, Moser RD. One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ + ≈ 2000. Physics of Fluids, 2013, 25(10): 105102 doi: 10.1063/1.4823831
|
[40] |
Morrill-Winter C, Klewicki J, Baidya R, et al. Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers. Experiments in Fluids, 2015, 56(12): 1-14
|
[41] |
Morrill-Winter C, Squire D, Klewicki J, et al. Reynolds number and roughness effects on turbulent stresses in sandpaper roughness boundary layers. Physical Review Fluids, 2017, 2(5): 054608 doi: 10.1103/PhysRevFluids.2.054608
|
[42] |
Li D, Luo K, Fan J. Direct numerical simulation of heat transfer in a spatially developing turbulent boundary layer. Physics of Fluids, 2016, 28(10): 105104 doi: 10.1063/1.4964686
|
[43] |
Vallikivi M, Hultmark M, Smits AJ. Turbulent boundary layer statistics at very high Reynolds number. Journal of Fluid Mechanics, 2015, 779: 371-389 doi: 10.1017/jfm.2015.273
|
[44] |
Schultz M, Flack K. The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. Journal of Fluid Mechanics, 2007, 580: 381-405 doi: 10.1017/S0022112007005502
|
[45] |
Monkewitz P, Chauhan K, Nagib H. Self-consistent high-Reynolds number asymptotics for ZPG turbulent boundary layers. Physics of Fluids, 2007, 19(11): 115105 doi: 10.1063/1.2780195
|
[46] |
Wu X, Moin P, Wallace JM, et al. Transitional-turbulent spots and turbulent-turbulent spots in boundary layers. Proceedings of the National Academy of Sciences, 2017, 114(27): E5292-E5299
|
[47] |
Jiménez J, Hoyas S, Simens MP, et al. Turbulent boundary layers and channels at moderate Reynolds numbers. Journal of Fluid Mechanics, 2010, 657: 335-360 doi: 10.1017/S0022112010001370
|
[48] |
Efros V, Krogstad PÅ. Development of a turbulent boundary layer after a step from smooth to rough surface. Experiments in Fluids, 2011, 51(6): 1563-1575 doi: 10.1007/s00348-011-1167-2
|
[49] |
Österlund JM. Experimental studies of zero pressure-gradient turbulent boundary layer flow. [PhD Thesis]. Stockholm: KTH Royal Institute of Technology, 1999
|
[50] |
Harun Z. The structure of adverse and favourable pressure gradient turbulent boundary layers. [PhD Thesis]. Melbourne: University of Melbourne, 2012
|
[51] |
Harun Z, Monty JP, Mathis R, et al. Pressure gradient effects on the large-scale structure of turbulent boundary layers. Journal of Fluid Mechanics, 2013, 715: 477-498 doi: 10.1017/jfm.2012.531
|
[52] |
Erm LP, Joubert PN. Low-Reynolds-number turbulent boundary layers. Journal of Fluid Mechanics, 1991, 230: 1-44 doi: 10.1017/S0022112091000691
|
[53] |
Fernholz H, Krause E, Nockemann M, et al. Comparative measurements in the canonical boundary layer at Reδ2 ≤ 6 × 104 on the wall of the German-Dutch windtunnel. Physics of Fluids, 1995, 7(6): 1275-1281 doi: 10.1063/1.868516
|
[54] |
Saddoughi SG, Veeravalli SV. Local isotropy in turbulent boundary layers at high Reynolds number. Journal of Fluid Mechanics, 1994, 268: 333-372 doi: 10.1017/S0022112094001370
|
[55] |
Schultz M, Flack K. Outer layer similarity in fully rough turbulent boundary layers. Experiments in Fluids, 2005, 38(3): 328-340 doi: 10.1007/s00348-004-0903-2
|
[56] |
Perry A, Li JD. Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. Journal of Fluid Mechanics, 1990, 218: 405-438 doi: 10.1017/S0022112090001057
|
[57] |
Mehdi F, Klewicki J, White C. Mean force structure and its scaling in rough-wall turbulent boundary layers. Journal of Fluid Mechanics, 2013, 731: 682-712 doi: 10.1017/jfm.2013.385
|
[58] |
Kumar P, Mahesh K. A method to determine wall shear stress from mean profiles in turbulent boundary layers. Experiments in Fluids, 2022, 63(1): 6 doi: 10.1007/s00348-021-03352-y
|