Citation: | Song Jun, Zhou Wenjun, Shang Wenhua, Li Huijie, Li Junpeng, Liu Juanfang. Recent advances on fragmentation and evaporation of droplets in airflow. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3371-3393. DOI: 10.6052/0459-1879-24-304 |
[1] |
Jen TC, Li L, Cui W, et al. Numerical investigations on cold gas dynamic spray process with nano- and microsize particles. International Journal of Heat and Mass Transfer, 2005, 48(21-22): 4384-4396 doi: 10.1016/j.ijheatmasstransfer.2005.05.008
|
[2] |
Jen TC, Pan L, Li L, et al. The acceleration of charged nano-particles in gas stream of supersonic de-Laval-type nozzle coupled with static electric field. Applied Thermal Engineering, 2006, 26(5-6): 613-621 doi: 10.1016/j.applthermaleng.2005.07.033
|
[3] |
Astarita A, Ausanio G, Boccarusso L, et al. Deposition of ferromagnetic particles using a magnetic assisted cold spray process. The International Journal of Advanced Manufacturing Technology, 2019, 103(1-4): 29-36 doi: 10.1007/s00170-019-03523-6
|
[4] |
Park JJ, Lee MW, Yoon SS, et al. Supersonic nozzle flow simulations for particle coating applications: Effects of shockwaves, nozzle geometry, ambient pressure, and substrate location upon flow characteristics. Journal of Thermal Spray Technology, 2010, 20(3): 514-522
|
[5] |
马凯, 李成新. 真空冷喷涂技术及其在功能器件中的应用. 中国表面工程, 2020, 33(4): 26-50 (Ma Kai, Li Chengxin. Vacuum cold spraying technology and its application in functional devices. Surface Engineering in China, 2020, 33(4): 26-50 (in Chinese) doi: 10.11933/j.issn.1007-9289.20200514001
Ma Kai, Li Chengxin. Vacuum cold spraying technology and its application in functional devices. Surface Engineering in China, 2020, 33(4): 26-50 (in Chinese) doi: 10.11933/j.issn.1007-9289.20200514001
|
[6] |
Lee JG, An S, Kim TG, et al. Self-cleaning anticondensing glass via supersonic spraying of silver nanowires, silica, and polystyrene nanoparticles. ACS Applied Materials & Interfaces, 2017, 9(40): 35325-35332
|
[7] |
Kim SD, Lee JG, Kim TG, et al. Additive-free electrode fabrication with reduced graphene oxide using supersonic kinetic spray for flexible lithium-ion batteries. Carbon, 2018, 139: 195-204 doi: 10.1016/j.carbon.2018.06.040
|
[8] |
Akin S, Wu P, Tsai JT, et al. A study on droplets dispersion and deposition characteristics under supersonic spray flow for nanomaterial coating applications. Surface and Coatings Technology, 2021, 426: 127788
|
[9] |
Qian L, Zhong X, Zhu C, et al. An experimental investigation on the secondary breakup of carboxymethyl cellulose droplets. International Journal of Multiphase Flow, 2021, 136: 103526 doi: 10.1016/j.ijmultiphaseflow.2020.103526
|
[10] |
Sharma S, Chandra NK, Basu S, et al. Advances in droplet aerobreakup. The European Physical Journal Special Topics, 2022, 232(6): 719-733
|
[11] |
Boggavarapu P, Ramesh SP, Avulapati MM, et al. Secondary breakup of water and surrogate fuels: Breakup modes and resultant droplet sizes. International Journal of Multiphase Flow, 2021, 145: 103816 doi: 10.1016/j.ijmultiphaseflow.2021.103816
|
[12] |
Rimbert N, Castrillon Escobar S, Meignen R, et al. Spheroidal droplet deformation, oscillation and breakup in uniform outer flow. Journal of Fluid Mechanics, 2020, 904: A15
|
[13] |
Suryaprakash R, Tomar G. Secondary breakup of drops. Journal of the Indian Institute of Science, 2018, 99(1): 77-91
|
[14] |
Jackiw IM, Ashgriz N. On aerodynamic droplet breakup. Journal of Fluid Mechanics, 2021, 913: A33
|
[15] |
Theofanous TG, Mitkin VV, Ng CL, et al. The physics of aerobreakup. II. Viscous liquids. Physics of Fluids, 2012, 24: 022104
|
[16] |
Zeng Q, Gonzalez-Avila SR, Voorde ST, et al. Jetting of viscous droplets from cavitation-induced Rayleigh-Taylor instability. Journal of Fluid Mechanics, 2018, 846: 916-943 doi: 10.1017/jfm.2018.284
|
[17] |
Zhao H, Liu HF, Li WF, et al. Morphological classification of low viscosity drop bag breakup in a continuous air jet stream. Physics of Fluids, 2010, 22: 114103 doi: 10.1063/1.3490408
|
[18] |
Guildenbecher DR, López-Rivera C, Sojka PE. Secondary atomization. Experiments in Fluids, 2009, 46(3): 371-402 doi: 10.1007/s00348-008-0593-2
|
[19] |
Jiao D, Jiao K, Zhang F, et al. Direct numerical simulation of droplet deformation in turbulent flows with different velocity profiles. Fuel, 2019, 247: 302-314 doi: 10.1016/j.fuel.2019.03.010
|
[20] |
Gonor A, Zolotova N. Spreading and break-up of a drop in a gas stream. Acta Astronautica, 1984, 11(2): 137-142 doi: 10.1016/0094-5765(84)90004-3
|
[21] |
Strotos G, Malgarinos I, Nikolopoulos N, et al. Predicting droplet deformation and breakup for moderate Weber numbers. International Journal of Multiphase Flow, 2016, 85: 96-109 doi: 10.1016/j.ijmultiphaseflow.2016.06.001
|
[22] |
Yang W, Jia M, Che Z, et al. Transitions of deformation to bag breakup and bag to bag-stamen breakup for droplets subjected to a continuous gas flow. International Journal of Heat and Mass Transfer, 2017, 111: 884-894 doi: 10.1016/j.ijheatmasstransfer.2017.04.012
|
[23] |
廖达雄, 张海洋, 阮一逍. 氮液滴在气流中的破碎和碰撞模拟. 哈尔滨工业大学学报, 2018, 50(7): 185-191 (Liao Daxiong, Zhang Haiyang, Ruan Yixiao, et al. Simulation of nitrogen droplet fragmentation and collision in airflow. Journal of Harbin Institute of Technology, 2018, 50(7): 185-191 (in Chinese) doi: 10.11918/j.issn.0367-6234.201710038
Liao Daxiong, Zhang Haiyang, Ruan Yixiao, et al. Simulation of nitrogen droplet fragmentation and collision in airflow. Journal of Harbin Institute of Technology, 2018, 50(7): 185-191 (in Chinese) doi: 10.11918/j.issn.0367-6234.201710038
|
[24] |
Bhandarkar A, Manna P, Chakraborty D. Assessment of droplet breakup models in high-speed cross-flow. Atomization and Sprays, 2017, 27(1): 61-79
|
[25] |
Liu N, Wang Z, Sun M, et al. Numerical simulation of liquid droplet breakup in supersonic flows. Acta Astronautica, 2018, 145: 116-130 doi: 10.1016/j.actaastro.2018.01.010
|
[26] |
Ade SS, Chandrala LD, Sahu KC. Size distribution of a drop undergoing breakup at moderate Weber numbers. Journal of Fluid Mechanics, 2023, 959: A38
|
[27] |
Kirar PK, Soni SK, Kolhe PS, et al. An experimental investigation of droplet morphology in swirl flow. Journal of Fluid Mechanics, 2022, 938: A6
|
[28] |
Zang D, Tarafdar S, Tarasevich YY, et al. Evaporation of a droplet: From physics to applications. Physics Reports, 2019, 804: 1-56 doi: 10.1016/j.physrep.2019.01.008
|
[29] |
Dehaeck S, Rednikov A, Colinet P. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets. Langmuir, 2014, 30(8): 2002-2008 doi: 10.1021/la404999z
|
[30] |
Chen K, Xu RN, Jiang PX. Evaporation enhancement of microscale droplet impact on micro/nanostructured surfaces. Langmuir, 2020, 36(41): 12230-12236 doi: 10.1021/acs.langmuir.0c01975
|
[31] |
Wang Z, Yuan B, Huang Y, et al. Progress in experimental investigations on evaporation characteristics of a fuel droplet. Fuel Processing Technology, 2022, 231: 107234
|
[32] |
Li C, Lyu Q, Wu Y, et al. Measurement of transient evaporation of an ethanol droplet stream with phase rainbow refractometry and high-speed microscopic shadowgraphy. International Journal of Heat and Mass Transfer, 2020, 146: 118843
|
[33] |
Starinskaya EM, Miskiv NB, Nazarov AD, et al. Evaporation of water/ethanol droplets in an air flow: Experimental study and modelling. International Journal of Heat and Mass Transfer, 2021, 177: 121502
|
[34] |
Narasu P, Boschmann S, Pöschko P, et al. Modeling and simulation of single ethanol/water droplet evaporation in dry and humid air. Combustion Science and Technology, 2020, 192(7): 1233-1252 doi: 10.1080/00102202.2020.1724980
|
[35] |
Duke-Walker V, Maxon WC, Almuhna SR, et al. Evaporation and breakup effects in the shock-driven multiphase instability. Journal of Fluid Mechanics, 2020, 908: A13
|
[36] |
Shang X, Zhang X, Nguyen TB, et al. Direct numerical simulation of evaporating droplets based on a sharp-interface algebraic VOF approach. International Journal of Heat and Mass Transfer, 2022, 184: 122282
|
[37] |
Kulkarni V, Sojka PE. Bag breakup of low viscosity drops in the presence of a continuous air jet. Physics of Fluids, 2014, 26(7): 072103
|
[38] |
Shao C, Luo K, Fan J. Detailed numerical simulation of unsteady drag coefficient of deformable droplet. Chemical Engineering Journal, 2017, 308: 619-631 doi: 10.1016/j.cej.2016.09.062
|
[39] |
Antonov DV, Strizhak PA. Heating, evaporation, fragmentation, and breakup of multi-component liquid droplets when heated in air flow. Chemical Engineering Research and Design, 2019, 146: 22-35 doi: 10.1016/j.cherd.2019.03.037
|
[40] |
Gobyzov OA, Ryabov MN, Bilsky AV. Study of deformation and breakup of submillimeter droplets’ spray in a supersonic nozzle flow. Applied Sciences, 2020, 10(18): 6149
|
[41] |
Li W, Wang J, Zhu C, et al. Deformation and acceleration of water droplet in continuous airflow. Physics of Fluids, 2022, 34(3): 033313
|
[42] |
Bian Q, Zhu C, Wang J, et al. Numerical investigation on the characteristics of single droplet deformation in the airflow at different temperatures. Physics of Fluids, 2022, 34(7): 073307
|
[43] |
Xu Z, Wang T, Che Z. Droplet deformation and breakup in shear flow of air. Physics of Fluids, 2020, 32(5): 052109
|
[44] |
Strotos G, Malgarinos I, Nikolopoulos N, et al. Numerical investigation of aerodynamic droplet breakup in a high temperature gas environment. Fuel, 2016, 181: 450-462 doi: 10.1016/j.fuel.2016.04.126
|
[45] |
Minko A, Guskov O, Arefyev K, et al. Physical and mathematical modeling of the interaction of water droplets and high-speed gas flow. Applied Sciences, 2021, 11(23): 11146
|
[46] |
Zhao H, Nguyen D, Duke DJ, et al. Effect of turbulence on drop breakup in counter air flow. International Journal of Multiphase Flow, 2019, 120: 103108
|
[47] |
Ling C, Zhong Y, Peng L. Three-dimensional numerical research on the effects of lateral pulsating airflow on droplet breakup. Physics of Fluids, 2021, 33(3): 033303
|
[48] |
Xu Z, Wang T, Che Z. Droplet breakup in airflow with strong shear effect. Journal of Fluid Mechanics, 2022, 941: A54
|
[49] |
Sezen K, Gungor A. Water droplet evaporation in atmospheric air stream. Physics of Fluids, 2023, 35(1): 017122
|
[50] |
Dgheim J, Abdallah M, Nasr N. Enhanced evaporation of droplet of ternary component under the effect of thermo-physical and transport properties variability. Arabian Journal for Science and Engineering, 2017, 43(5): 2181-2194
|
[51] |
Wang J, Qiao X, Ju D, et al. Experimental study on the evaporation and micro-explosion characteristics of nanofuel droplet at dilute concentrations. Energy, 2019, 183: 149-159 doi: 10.1016/j.energy.2019.06.136
|
[52] |
Ruan Y, Chen L, Liu X, et al. Numerical study of evaporation and motion characteristics of liquid nitrogen droplet in high-speed gas flow. IOP Conference Series : Materials Science and Engineering, 2017, 278(1): 012130
|
[53] |
Wang Y, Wu S, Yang Y, et al. Evaporation and movement of fine droplets in non-uniform temperature and humidity field. Building and Environment, 2019, 150: 75-87 doi: 10.1016/j.buildenv.2019.01.003
|
[54] |
Pinheiro AP, Vedovoto JM, da Silveira Neto A, et al. Ethanol droplet evaporation: Effects of ambient temperature, pressure and fuel vapor concentration. International Journal of Heat and Mass Transfer, 2019, 143: 118472
|
[55] |
Yang S, Gao Y, Deng C, et al. Evaporation and dynamic characteristics of a high-speed droplet under transcritical conditions. Advances in Mechanical Engineering, 2016, 8(4): 168781
|
[56] |
Jain M, Prakash RS, Tomar G, et al. Secondary breakup of a drop at moderate Weber numbers. Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences, 2015, 471(2177): 20140930
|
[57] |
Volkov RS, Kuznetsov GV, Strizhak PA. Influence of droplet concentration on evaporation in a high-temperature gas. International Journal of Heat and Mass Transfer, 2016, 96: 20-28 doi: 10.1016/j.ijheatmasstransfer.2016.01.029
|
[58] |
Kuznetsov GV, Strizhak PA, Volkov RS. Heat exchange of an evaporating water droplet in a high-temperature environment. International Journal of Thermal Sciences, 2020, 150: 106227
|
[59] |
Duke-Walker V, Musick BJ, McFarland JA. Experiments on the breakup and evaporation of small droplets at high Weber number. International Journal of Multiphase Flow, 2023, 161: 104389
|
[60] |
Wang Z, Hopfes T, Giglmaier M, et al. Effect of Mach number on droplet aerobreakup in shear stripping regime. Experiments in Fluids, 2020, 61(9): A193
|
[61] |
Kamiya T, Asahara M, Yada T, et al. Study on characteristics of fragment size distribution generated via droplet breakup by high-speed gas flow. Physics of Fluids, 2022, 34(1): 012118
|
[62] |
Li J, Shen S, Liu J, et al. Secondary droplet size distribution upon breakup of a sub-milimeter droplet in high speed cross flow. International Journal of Multiphase Flow, 2022, 148: 103943
|
[63] |
Sharma S, Pratap Singh A, Srinivas Rao S, et al. Shock induced aerobreakup of a droplet. Journal of Fluid Mechanics, 2021, 929: A27
|
[64] |
Soni SK, Kirar PK, Kolhe P, et al. Deformation and breakup of droplets in an oblique continuous air stream. International Journal of Multiphase Flow, 2020, 122: 103141
|
[65] |
Ghassemi H, Baek SW, Khan QS. Experimental study on binary droplet evaporation at elevated pressures and temperatures. Combustion Science and Technology, 2006, 178(6): 1031-1053 doi: 10.1080/00102200500296697
|
[66] |
Wu MS, Yang SI. Combustion characteristics of multi-component cedar bio-oil/kerosene droplet. Energy, 2016, 113: 788-795 doi: 10.1016/j.energy.2016.07.097
|
[67] |
Zhang Y, Huang R, Xu S, et al. The effect of different n-butanol-fatty acid methyl esters (FAME) blends on puffing characteristics. Fuel, 2017, 208: 30-40 doi: 10.1016/j.fuel.2017.07.001
|
[68] |
Ma X, Zhang F, Han K, et al. Evaporation characteristics of acetone-butanol-ethanol and diesel blends droplets at high ambient temperatures. Fuel, 2015, 160: 43-49 doi: 10.1016/j.fuel.2015.07.079
|
[69] |
Zhang Y, Huang R, Huang Y, et al. Effect of ambient temperature on the puffing characteristics of single butanol-hexadecane droplet. Energy, 2018, 145: 430-441 doi: 10.1016/j.energy.2017.12.158
|
[70] |
Prasad S, Narayanan S, Mandal DK. Acoustic induced flow around an evaporating drop and its influence on internal circulation. International Journal of Multiphase Flow, 2019, 116: 91-99 doi: 10.1016/j.ijmultiphaseflow.2019.04.012
|
[71] |
Finneran J. On the evaluation of transport properties for droplet evaporation problems. International Journal of Heat and Mass Transfer, 2021, 181: 121858
|
[72] |
Al Zaitone B. Oblate spheroidal droplet evaporation in an acoustic levitator. International Journal of Heat and Mass Transfer, 2018, 126: 164-172 doi: 10.1016/j.ijheatmasstransfer.2018.06.029
|
[73] |
Strizhak PA, Volkov RS, Castanet G, et al. Heating and evaporation of suspended water droplets: Experimental studies and modelling. International Journal of Heat and Mass Transfer, 2018, 127: 92-106 doi: 10.1016/j.ijheatmasstransfer.2018.06.103
|
[74] |
Maruyama Y, Hasegawa K. Evaporation and drying kinetics of water-NaCl droplets via acoustic levitation. RSC Advances, 2020, 10(4): 1870-1877 doi: 10.1039/C9RA09395H
|
[75] |
Junk M, Hinrichs J, Polt F, et al. Quantitative experimental determination of evaporation influencing factors in single droplet levitation. International Journal of Heat and Mass Transfer, 2020, 149: 119057
|
[1] | Zheng Wenpeng, Lu Xiaoge, Yi Shihe. EXPERIMENTAL STUDY ON BOUNDARY LAYER TRANSITION OF ELLIPTICAL CONE CENTERLINE UNDER THE EFFECT OF ANGLE OF ATTACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(2): 413-423. DOI: 10.6052/0459-1879-24-489 |
[2] | Sun Zhikun, Shi Zhiwei, Li Zheng, Geng Xi, Zhang Weilin. OPPOSING PLASMA SYNTHETIC JET FOR LOW-SPEED FLOW SEPARATION INHIBITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1267-1277. DOI: 10.6052/0459-1879-23-005 |
[3] | Cui Guangyao, Pan Chong, Gao Qi, Akira Rinoshika, Wang Jinjun. FLOW STRUCTURE IN THE TURBULENT BOUNDARY LAYER OVER DIRECTIONAL RIBLETS SURFACES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1201-1212. DOI: 10.6052/0459-1879-17-252 |
[4] | Chen Ke, You Yunxiang, Chen Yunxiang, Hu Tianqun. EXPERIMENTS ON EVOLUTION CHARACTERISTICS FOR THE MUSHROOM-LIKE VORTEX STRUCTURE GENERATED BY A SUBMERGED LAMINAR ROUND JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 843-853. DOI: 10.6052/0459-1879-12-370 |
[5] | Wubing Yang, Fenggan Zhuang, Qing Shen, Shihe Yi, Lin He, Yuxin Zhao. Experimental study on perturbation mixing enhancement in supersonic mixing layers[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 373-382. DOI: 10.6052/0459-1879-2010-3-2008-660 |
[6] | EFFECT OF LONGITUDINAL VORIICES ON THE TURBULENT STRUCTURE IN NEAR-WALL REGION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(5): 625-630. DOI: 10.6052/0459-1879-1994-5-1995-589 |
[7] | AN EXPERIMENTAL INVESTIGATION OF THE COHERENT STRUCTURES OF THE FLOW BEHIND A BACKWARD FACING STEP[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(2): 129-133. DOI: 10.6052/0459-1879-1993-2-1995-623 |
[8] | A STUDY OF THE FLOW STRUCTURE AROUND A CONSTANT-RATE PITCHING AIRFOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(5): 517-521. DOI: 10.6052/0459-1879-1992-5-1995-770 |
[9] | THE WAYS OF THE FORMATION OF THE HORSESHOE VORTEX IN TURBULENT BOUNDARY LAYER[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(2): 145-151. DOI: 10.6052/0459-1879-1992-2-1995-722 |
[10] | EXPERIMENTAL STUDY OF LAMINAR FLOW AND INSTABILITY MECHANISM OF ROUND JET WITH LOW SPEED[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(6): 721-726. DOI: 10.6052/0459-1879-1991-6-1995-896 |