Citation: | Xu Bo, Yu Chao, Wang Chong, Kan Qianhua, Wang Qingyuan, Kang Guozheng. Phase-field simulation on the functional properties of stress-assisted aging NiTi shape memory alloys. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3507-3520. DOI: 10.6052/0459-1879-24-273 |
[1] |
杨建楠, 黄彬, 谷小军等. 形状记忆合金力学行为与应用综述. 固体力学学报, 2021, 42(4): 345-375 (Yang Jiannan, Huang Bin, Gu Xiaojun, et al. A review of shape memory alloys: mechanical behavior and application. Chinese Journal of Solid Mechanics, 2021, 42(4): 345-375 (in Chinese)
Yang Jiannan, Huang Bin, Gu Xiaojun, et al. A review of shape memory alloys: mechanical behavior and application. Chinese Journal of Solid Mechanics, 2021, 42(4): 345-375 (in Chinese)
|
[2] |
牛豪杰, 林成新. 形状记忆合金的应用现状综述. 天津理工大学学报, 2020, 36(4): 1-6 (Niu Haojie, Lin Chengxin. Review of shape memory alloy application status. Journal of Tianjin University of Technology, 2020, 36(4): 1-6 (in Chinese)
Niu Haojie, Lin Chengxin. Review of shape memory alloy application status. Journal of Tianjin University of Technology, 2020, 36(4): 1-6 (in Chinese)
|
[3] |
Hou H, Simsek E, Ma T, et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science, 2019, 366(6469): 1116-1121 doi: 10.1126/science.aax7616
|
[4] |
Qian S, Catalini D, Muehlbauer J, et al. High-performance multimode elastocaloric cooling system. Science, 2023, 380: 722-727 doi: 10.1126/science.adg7043
|
[5] |
Zhou G, Zhu Y, Yao S, et al. Giant temperature span and cooling power in elastocaloric regenerator. Joule, 2023, 7: 2003-2015 doi: 10.1016/j.joule.2023.07.004
|
[6] |
Zhou G, Li Z, Wang Q, et al. A multi-material cascade elastocaloric cooling device for large temperature lift. Nature Energy, 2024, 9: 862-870
|
[7] |
肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状. 金属学报, 2021, 57(1): 29-41 (Xiao Fei, Chen Hong, Jin Xuejun. Research progress in elastocaloric cooling effect basing on shape memory alloy. Acta Metallurgica Sinica, 2021, 57(1): 29-41 (in Chinese)
Xiao Fei, Chen Hong, Jin Xuejun. Research progress in elastocaloric cooling effect basing on shape memory alloy. Acta Metallurgica Sinica, 2021, 57(1): 29-41 (in Chinese)
|
[8] |
康国政, 阚前华, 于超等. 热致和磁致形状记忆合金循环变形和疲劳行为研究. 力学进展. 2018, 48: 66-147 (Kang Guozheng, Kan Qianhua, Yu Chao, et al. Study on cyclic deformation and fatigue of thermal and magnetic shape memory alloys. Advances in Mechanics, 2018, 48: 201802 (in Chinese)
Kang Guozheng, Kan Qianhua, Yu Chao, et al. Study on cyclic deformation and fatigue of thermal and magnetic shape memory alloys. Advances in Mechanics, 2018, 48: 201802 (in Chinese)
|
[9] |
Šittner P, Sedlák P, Seiner H, et al. On the coupling between martensitic transformation and plasticity in NiTi: Experiments and continuum based modelling. Progress in Materials Science, 2018, 98: 249-298 doi: 10.1016/j.pmatsci.2018.07.003
|
[10] |
Kang G, Yu C, Kan Q. Thermo-mechanically coupled cyclic deformation and fatigue failure of NiTi shape memory alloys: Experiments, simulations and theories. Springer Nature, 2023
|
[11] |
Ahadi A, Sun Q. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Materialia, 2014, 76: 186-197 doi: 10.1016/j.actamat.2014.05.007
|
[12] |
Chen J, Liu B, Xing L, et al. Toward tunable mechanical behavior and enhanced elastocaloric effect in NiTi alloy by gradient structure. Acta Materialia, 2022, 226: 117609 doi: 10.1016/j.actamat.2021.117609
|
[13] |
Frenzel J, George EP, Dlouhy A, et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Materialia, 2010, 58: 3444-3458 doi: 10.1016/j.actamat.2010.02.019
|
[14] |
Zhu J, Wang D, Gao Y, et al. Linear-superelastic metals by controlled strain release via nanoscale concentration-gradient engineering. Materials Today, 2020, 33: 17-23 doi: 10.1016/j.mattod.2019.10.003
|
[15] |
Zhou Y, Xue D, Ding X, et al. Strain glass in doped Ti50(Ni50- xD x) (D = Co, Cr, Mn) alloys: Implication for the generality of strain glass in defect-containing ferroelastic systems. Acta Materialia, 2010, 58: 5433-5442 doi: 10.1016/j.actamat.2010.06.019
|
[16] |
Chluba C, Ge W, Lima de Miranda R, et al. Ultralow-fatigue shape memory alloy films. Science, 2015, 348: 1004-1007 doi: 10.1126/science.1261164
|
[17] |
Benafan O, Padula II S A, Noebe RD, et al. Role of B19′ martensite deformation in stabilizing two-way shape memory behavior in NiTi. Journal of Applied Physics, 2012, 112: 093510 doi: 10.1063/1.4764313
|
[18] |
Zhao S, Liang Q, Su Y, et al. Cryogenic rolling induces quasi-linear superelasticity with high strength over a wide temperature range in TiNi shape memory alloys. Scripta Materialia, 2024, 243: 115996 doi: 10.1016/j.scriptamat.2024.115996
|
[19] |
Wang X, Kustov S, Li K, et al. Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti-50.8 at. % Ni alloy with micron-sized grains. Acta Materialia, 2015, 82: 224-233
|
[20] |
Dang P, Pang J, Zhou Y, et al. Improved stability of superelasticity and elastocaloric effect in Ti-Ni alloys by suppressing Lüders-like deformation under tensile load. Journal of Materials Science & Technology, 2023, 146: 154-167
|
[21] |
Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Progress in Materials Science, 2005, 50: 511-678 doi: 10.1016/j.pmatsci.2004.10.001
|
[22] |
Khalil-Allafi J, Ren X, Eggeler G. The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys. Acta Materialia, 2002, 50: 793-803 doi: 10.1016/S1359-6454(01)00385-8
|
[23] |
Gall K, Maier HJ. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Materialia, 2002, 50: 4643-4657 doi: 10.1016/S1359-6454(02)00315-4
|
[24] |
Wang X, Pu Z, Yang Q, et al. Improved functional stability of a coarse-grained Ti-50.8 at. % Ni shape memory alloy achieved by precipitation on dislocation networks. Scripta Materialia, 2019, 163: 57-61
|
[25] |
Zhou X, Zhang T, Cheng L, et al. Variant selection map of external load during Ni4Ti3 precipitation in nitinol: a theoretical and phase field study. Acta Mechanica Sinica, 2024, 40: 123480 doi: 10.1007/s10409-023-23480-x
|
[26] |
Michutta J, Carroll MC, Yawny A, et al. Martensitic phase transformation in Ni-rich NiTi single crystals with one family of Ni4Ti3 precipitates. Materials Science and Engineering A, 2004, 378: 152-156 doi: 10.1016/j.msea.2003.11.061
|
[27] |
Manchuraju S, Kroeger A, Somsen C, et al. Pseudoelastic deformation and size effects during in situ transmission electron microscopy tensile testing of NiTi. Acta Materialia, 2012, 60: 2770-2777 doi: 10.1016/j.actamat.2012.01.043
|
[28] |
Timofeeva EE, Yu Panchenko E, Zherdeva MV, et al. Effect of one family of Ti3Ni4 precipitates on shape memory effect, superelasticity and strength properties of the B2 phase in high-nickel [001]-oriented Ti-51.5 at. % Ni single crystals. Materials Science & Engineering A, 2022, 832: 142420
|
[29] |
Xiao F, Chu K, Li Z, et al. Improved functional fatigue resistance of single crystalline NiTi micropillars with uniformly oriented Ti3Ni4 precipitates. International Journal of Plasticity, 2023, 160: 103480 doi: 10.1016/j.ijplas.2022.103480
|
[30] |
Grandi D, Maraldi M, Molari L. A macroscale phase-field model for shape memory alloys with non-isothermal effects: Influence of strain rate and environmental conditions on the mechanical response. Acta Materialia, 2012, 60: 179-191 doi: 10.1016/j.actamat.2011.09.040
|
[31] |
Zhong Y, Zhu T. Phase-field modeling of martensitic microstructure in NiTi shape memory alloys. Acta Materialia, 2014, 75: 337-347 doi: 10.1016/j.actamat.2014.04.013
|
[32] |
Esfahani SE, Ghamarian I, Levitas VI, et al. Microscale phase field modeling of the martensitic transformation during cyclic loading of NiTi single crystal. International Journal of Solids and Structures, 2018, 146: 80-96 doi: 10.1016/j.ijsolstr.2018.03.022
|
[33] |
Wang D, Liang C, Zhao S, et al. Phase field simulation of martensitic transformation in pre-strained nanocomposite shape memory alloys. Acta Materialia, 2019, 164: 99-109 doi: 10.1016/j.actamat.2018.10.030
|
[34] |
熊君媛, 徐波, 康国政. 纳米多晶NiTi形状记忆合金超弹性的晶粒取向依赖性相场研究. 固体力学学报, 2021, 42(6): 671-681 (Xong Junyuan, Xu Bo, Kang Guozheng. Phase field simulation on the grain orientation dependent super-elasticity of nanocrystalline NiTi shape memory alloys. Chinese Journal of Solid Mechanics, 2021, 42(6): 671-681 (in Chinese)
Xong Junyuan, Xu Bo, Kang Guozheng. Phase field simulation on the grain orientation dependent super-elasticity of nanocrystalline NiTi shape memory alloys. Chinese Journal of Solid Mechanics, 2021, 42(6): 671-681 (in Chinese)
|
[35] |
徐波, 康国政. 梯度纳米晶NiTi形状记忆合金的超弹性和形状记忆效应相场模拟. 力学学报, 2021, 53(3): 802-812 (Xu Bo, Kang Guozheng. Phase field simulation on the super-elasticity and shape memory effect of gradient nanocrystalline NiTi shape memory alloy. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 802-812 (in Chinese)
Xu Bo, Kang Guozheng. Phase field simulation on the super-elasticity and shape memory effect of gradient nanocrystalline NiTi shape memory alloy. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 802-812 (in Chinese)
|
[36] |
Li X, Su Y. A phase-field study of the martensitic detwinning in NiTi shape memory alloys under tension or compression. Acta Mechanica, 2020, 231: 1539-1557 doi: 10.1007/s00707-020-02613-x
|
[37] |
Xu T, Wang C, Zhu Y, et al. Efficient phase-field simulation for linear superelastic NiTi alloys under temperature gradients. International Journal of Mechanical Sciences, 2023, 259: 108592 doi: 10.1016/j.ijmecsci.2023.108592
|
[38] |
Kavvadias D, Baxevanis Th. Phase-field description of fracture in NiTi single crystals. Computer Methods in Applied Mechanics and Engineering, 2024, 419: 116677 doi: 10.1016/j.cma.2023.116677
|
[39] |
Xu B, Huang B, Wang C, et al. Effect of texture on the grain-size-dependent functional properties of NiTi shape memory alloys and texture gradient design: A phase field study. Acta Mechanica Solida Sinica, 2024, 37: 10-32 doi: 10.1007/s10338-023-00439-3
|
[40] |
Xu B, Yu C, Wang C, et al. Effect of pore on the deformation behaviors of NiTi shape memory alloys: A crystal-plasticity-based phase field modeling. International Journal of Plasticity, 2024, 175: 103931 doi: 10.1016/j.ijplas.2024.103931
|
[41] |
Li D, Chen L. Shape of a rhombohedral coherent Ti11Ni14 precipitate in a cubic matrix and its growth and dissolution during constrained aging. Acta Materialia, 1997, 45(6): 2435-2442 doi: 10.1016/S1359-6454(96)00363-1
|
[42] |
柯常波. NiTi形状记忆合金中Ni4Ti3相沉淀行为的相场法模拟研究. [博士论文]. 广州: 华南理工大学, 2012 (Changbo Ke. Phase field study of Ni4Ti3 precipitation behavior in NiTi shape memory alloys. [PhD Thesis]. Guangzhou: South China University of Technology, 2012 (in Chinese)
Changbo Ke. Phase field study of Ni4Ti3 precipitation behavior in NiTi shape memory alloys. [PhD Thesis]. Guangzhou: South China University of Technology, 2012 (in Chinese)
|
[43] |
Guo W, Steinbach I, Somsen C, et al. On the effect of superimposed external stresses on the nucleation and growth of Ni4Ti3 particles: A parametric phase field study. Acta Materialia, 2011, 59: 3287-3296 doi: 10.1016/j.actamat.2011.02.002
|
[44] |
Zhou N, Shen C, Wagner MFX, et al. Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni. Acta Materialia, 2010, 58: 6685-6694 doi: 10.1016/j.actamat.2010.08.033
|
[45] |
Zhu J, Wu H, Wu Y, et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation. Acta Materialia, 2021, 207: 116665 doi: 10.1016/j.actamat.2021.116665
|
[46] |
Dong T, Liang C, Su Y, et al. Phase field simulations for the crossover from sharp martensitic transformation into smooth strain glass transition by fine precipitates. Acta Materialia, 2023, 245: 118634 doi: 10.1016/j.actamat.2022.118634
|
[47] |
Xu B, Sun Y, Yu C, et al. Effect of Ni4Ti3 precipitates on the functional properties of NiTi shape memory alloys: A phase field study. International Journal of Plasticity, 2024, 177: 103993 doi: 10.1016/j.ijplas.2024.103993
|
[48] |
Cahn J. On spinodal decomposition. Acta Metallurgica, 1961, 9: 795-801 doi: 10.1016/0001-6160(61)90182-1
|
[49] |
Landau LD. Collected Papers of LD Landau. Pergamon Press, 1965
|
[50] |
Xu B, Kang G, Kan Q, et al. Phase field simulation on the cyclic degeneration of one-way shape memory effect of NiTi shape memory alloy single crystal. International Journal of Mechanical Sciences, 2020, 168: 105303 doi: 10.1016/j.ijmecsci.2019.105303
|
[51] |
Artemev A, Jin Y, Khachaturyan AG. Three-dimensional phase field model of proper martensitic transformation. Acta Materialia, 2001, 49: 1165-1177 doi: 10.1016/S1359-6454(01)00021-0
|
[52] |
Cissé C, Zaeem MA. An asymmetric elasto-plastic phase-field model for shape memory effect, pseudoelasticity and thermomechanical training in polycrystalline shape memory alloys. Acta Materialia, 2020, 201: 580-595 doi: 10.1016/j.actamat.2020.10.034
|
[53] |
Rao Z, Leng J, Yan Z, et al. A three-dimensional constitutive model for shape memory alloy considering transformation-induced plasticity, two-way shape memory effect, plastic yield and tension-compression asymmetry. European Journal of Mechanics / A Solids, 2023, 99: 104945 doi: 10.1016/j.euromechsol.2023.104945
|
[54] |
Tsimpoukis S, Kyriakides S. Rate induced thermomechanical interactions in NiTi tensile tests on strips. Journal of the Mechanics and Physics of Solids, 2024, 184: 105530 doi: 10.1016/j.jmps.2023.105530
|
[55] |
Tian L, Zhou J, Jia P, et al. Thermomechanical response and elastocaloric effect of shape memory alloy wires. Mechanics of Materials, 2024, 193: 104985 doi: 10.1016/j.mechmat.2024.104985
|
[56] |
Cissé C, Zaeem MA. Design of NiTi-based shape memory microcomposites with enhanced elastocaloric performance by a fully thermomechanical coupled phase-field model. Materials & Design, 2021, 207: 109898
|
[57] |
Zhang Q, Chen J, Fang G. From mechanical behavior and elastocaloric effect to microscopic mechanisms of gradient-structured NiTi alloy: A phase-field study. International Journal of Plasticity, 2023, 171: 103809 doi: 10.1016/j.ijplas.2023.103809
|
[58] |
Ahluwalia R, Quek SS, Wu DT. Simulation of grain size effects in nanocrystalline shape memory alloys. Journal of Applied Physics, 2015, 117: 244305 doi: 10.1063/1.4923044
|
[59] |
Xu B, Huang B, Wang C, et al. Phase field modeling of the aspect ratio dependent functional properties of NiTi shape memory alloys with different grain sizes. Acta Mechanica Sinica, 2024, doi: 10.1007/s10409-024-23272-x
|
[60] |
Mikula J, Quek SS, Joshi SP, et al. The role of bimodal grain size distribution in nanocrystalline shape memory alloys. Smart Materials and Structures, 2018, 27: 105004 doi: 10.1088/1361-665X/aada30
|
[61] |
Sun Y, Luo J, Zhu J, et al. A non-isothermal phase field study of the shape memory effect and pseudoelasticity of polycrystalline shape memory alloys. Computational Materials Science, 2019, 167: 65-76 doi: 10.1016/j.commatsci.2019.05.036
|
[62] |
Xu B, Kang G, Yu C, et al. Phase field simulation on the grain size dependent super-elasticity and shape memory effect of nanocrystalline NiTi shape memory alloys. International Journal of Engineering Science, 2020, 156: 103373 doi: 10.1016/j.ijengsci.2020.103373
|
[63] |
Yu C, Kang G, Kan Q. Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation. International Journal of Plasticity, 2014, 54: 132-162 doi: 10.1016/j.ijplas.2013.08.012
|
[64] |
Villars P, Cenzual K, Okamoto H, et al. Pauling File Multinaries Edition–2012. Springer Materials, 2012
|
[65] |
Sharma N. Current activated tip sintering of Ni-Ti intermetallics. San Diego State University, 2014
|
[66] |
Onderka B, Sypień A, Wierzbicka-Miernik A, et al. Heat capacities of some binary intermetallic compounds in Al-Fe-Ni-Ti system. Archives of Metallurgy and Materials, 2010, 55(2): 435-439
|
[67] |
Cui J, Wu Y, Muehlbauer J, et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Applied Physics Letters, 2012, 101(7): 073904 doi: 10.1063/1.4746257
|
[68] |
Xu B, Kang G. Phase field simulation on the super-elasticity, elastocaloric and shape memory effect of geometrically graded nano-polycrystalline NiTi shape memory alloys. International Journal of Mechanical Sciences, 2021, 201: 106462 doi: 10.1016/j.ijmecsci.2021.106462
|
[69] |
Anand L, Gurtin ME. Thermal effects in the superelasticity of crystalline shape memory materials. Journal of Mechanics and Physics of Solids, 2003, 51: 1015-1058 doi: 10.1016/S0022-5096(03)00017-6
|
[70] |
Li D, Chen L. Morphological evolution of coherent multi-variant Ti11Ni14 precipitates in TiNi alloys under an applied stress—a computer simulation study. Acta Materialia, 1998, 46(2): 639-649 doi: 10.1016/S1359-6454(97)00241-3
|
[71] |
Nishida M, Wayman CM, Chiba A. Electron microscopy studies of the martensitic transformation in an aged Ti-51 at.% Ni shape memory alloy. Metallography, 1988, 21: 275-291
|
[72] |
Evirgen A, Karaman I, Noebe RD, et al. Effect of precipitation on the microstructure and the shape memory response of the Ni50.3Ti29.7Zr20 high temperature shape memory alloy. Scripta Materialia, 2013, 69: 354-357
|
[73] |
Shaw JA, Kyriakides S. On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Materialia, 1997, 45(2): 683-700 doi: 10.1016/S1359-6454(96)00189-9
|
[74] |
Michutta J, Somsen Ch, Yawny A, et al. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates. Acta Materialia, 2006, 54: 3525-3542 doi: 10.1016/j.actamat.2006.03.036
|
[75] |
Xu B, Kang G, Kan Q, et al. Phase field simulation to one-way shape memory effect of NiTi shape memory alloy single crystal. Computational Materials Science, 2019, 161: 276-292 doi: 10.1016/j.commatsci.2019.02.009
|
[76] |
Khalil-Allafi J, Dlouhy A, Eggeler G. Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Materialia, 2002, 50: 4255-4274 doi: 10.1016/S1359-6454(02)00257-4
|
[1] | Cheng Qian, Yin Jianfei, Wen Jihong, Yu Dianlong. QUASI-STATIC AND DYNAMIC MECHANICAL PROPERTIES OF FUNCTIONALLY GRADED TRIPLY PERIODIC MINIMAL SURFACE STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2646-2658. DOI: 10.6052/0459-1879-24-155 |
[2] | Yang Xujia, He Yuxin, Zhang Xin, Yang Xiaomin, Wang Tao, Qiao Li. MULTISCALE SIMULATION OF MECHANICAL DEFORMATION EFFECTS ON CRITICAL PROPERTIES OF Nb3Sn HIGH FIELD COMPOSITE SUPERCONDUCTORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 719-731. DOI: 10.6052/0459-1879-21-491 |
[3] | Yi Min, Chang Ke, Liang Chenguang, Zhou Liucheng, Yang Yangyiwei, Yi Xin, Xu Baixiang. COMPUTATIONAL STUDY OF EVOLUTION AND FATIGUE DISPERSITY OF MICROSTRUCTURES BY ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3263-3273. DOI: 10.6052/0459-1879-21-389 |
[4] | Wu Jianying, Chen Wanxin, Huang Yuli. COMPUTATIONAL MODELING OF SHRINKAGE INDUCED CRACKING IN EARLY-AGE CONCRETE BASED ON THE UNIFIED PHASE-FIELD THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1367-1382. DOI: 10.6052/0459-1879-21-020 |
[5] | Xu Bo, Kang Guozheng. PHASE FIELD SIMULATION ON THE SUPER-ELASTICITY AND SHAPE MEMORY EFFECT OF GRADIENT NANOCRYSTALLINE NiTi SHAPE MEMORY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 802-812. DOI: 10.6052/0459-1879-20-397 |
[6] | Ye Changzheng, Meng Han, Xin Fengxian, Lu Tianjian. TRANSFER FUNCTION METHOD FOR ACOUSTIC PROPERTY STUDY OF UNDERWATER ANECHOIC LAYER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 213-224. DOI: 10.6052/0459-1879-15-087 |
[7] | Ning Jianguo. Mechanical property and numerical simulation on W-Ni-Fe alloys[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1149-1155. DOI: 10.6052/0459-1879-2010-6-lxxb2009-461 |
[8] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
[9] | A new topology description function based approach for material design with prescribed properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(5): 586-592. DOI: 10.6052/0459-1879-2005-5-2004-154 |
[10] | 一种描述形状记忆合金拟弹性变形行为的本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(2): 201-210. DOI: 10.6052/0459-1879-1991-2-1995-827 |