Citation: | Yan Ziming, Hu Yuanyu, Li Xiang, Liu Zhanli, Tian Yun, Zhuang Zhuo. A bone mechanical study integrated by deep-learning method and mechanical modeling. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1876-1891. DOI: 10.6052/0459-1879-24-264 |
[1] |
乔爱科. 生物力学的两个核心问题. 力学与实践, 2020, 42(1): 119-123 (Qiao Aike. Two core issues of biomechanics. Mechanics in Engineering, 2020, 42(1): 119-123 (in Chinese)
Qiao Aike. Two core issues of biomechanics. Mechanics in Engineering, 2020, 42(1): 119-123 (in Chinese)
|
[2] |
Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nature Reviews Materials, 2020, 5(8): 584-603 doi: 10.1038/s41578-020-0204-2
|
[3] |
Zhang M, Lin R, Wang X, et al. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Science Advances, 2020, 6(12): eaaz6725 doi: 10.1126/sciadv.aaz6725
|
[4] |
Malachanne E, Dureisseix D, Cañadas P, et al. Experimental and numerical identification of cortical bone permeability. Journal of Biomechanics, 2008, 41(3): 721-725 doi: 10.1016/j.jbiomech.2007.09.028
|
[5] |
Lu L, Jin P, Pang G, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 2021, 3(3): 218-229 doi: 10.1038/s42256-021-00302-5
|
[6] |
Liu X, Tian S, Tao F, et al. A review of artificial neural networks in the constitutive modeling of composite materials. Composites Part B: Engineering, 2021, 224: 109152 doi: 10.1016/j.compositesb.2021.109152
|
[7] |
Yan W, Lin S, Kafka OL, et al. Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing. Computational Mechanics, 2018, 61(5): 521-541 doi: 10.1007/s00466-018-1539-z
|
[8] |
Liu B, Kovachki N, Li Z, et al. A learning-based multiscale method and its application to inelastic impact problems. Journal of the Mechanics and Physics of Solids, 2022, 158: 104668 doi: 10.1016/j.jmps.2021.104668
|
[9] |
Shukla K, Jagtap AD, Blackshire JL, et al. A physics-informed neural network for quantifying the microstructural properties of polycrystalline nickel using ultrasound data: A promising approach for solving inverse problems. IEEE Signal Processing Magazine, 2021, 39(1): 68-77
|
[10] |
Lookman T, Balachandran PV, Xue D, et al. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. NPJ Computational Materials, 2019, 5(1): 21
|
[11] |
李想, 严子铭, 柳占立. 机器学习与计算力学的结合及应用初探. 科学通报, 2019, 64(7): 635-648 (Li Xiang, Yan Ziming, Liu Zhanli. Combination and application of machine learning and computational mechanics. Chinese Science Bulletin, 2019, 64(7): 635-648 (in Chinese)
Li Xiang, Yan Ziming, Liu Zhanli. Combination and application of machine learning and computational mechanics. Chinese Science Bulletin, 2019, 64(7): 635-648 (in Chinese)
|
[12] |
李想, 严子铭, 柳占立等. 基于仿真和数据驱动的先进结构材料设计. 力学进展, 2021, 51(1): 82-105 (Li Xiang, Yan Ziming, Liu Zhanli, et al. Advanced structural material design based on simulation and data-driven method. Advances in Mechanics, 2021, 51(1): 82-105 (in Chinese) doi: 10.6052/1000-0992-20-012
Li Xiang, Yan Ziming, Liu Zhanli, et al. Advanced structural material design based on simulation and data-driven method. Advances in Mechanics, 2021, 51(1): 82-105 (in Chinese) doi: 10.6052/1000-0992-20-012
|
[13] |
Li X, Liu Z, Cui S, et al. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 735-753 doi: 10.1016/j.cma.2019.01.005
|
[14] |
Li X, Ning S, Liu Z, et al. Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112737 doi: 10.1016/j.cma.2019.112737
|
[15] |
庄茁, 严子铭, 姚凯丽等. 固体力学跨尺度计算若干问题研究. 计算力学学报, 2024, 41(1): 40-46 (Zhuang Zhuo, Yan Ziming, Yao Kaili, et al. Several problem studies in solid mechanics by solid mechanics by spanning the scale computation analysis. Chinese Journal of Computational Mechanics, 2024, 41(1): 40-46 (in Chinese) doi: 10.7511/jslx20230909003
Zhuang Zhuo, Yan Ziming, Yao Kaili, et al. Several problem studies in solid mechanics by solid mechanics by spanning the scale computation analysis. Chinese Journal of Computational Mechanics, 2024, 41(1): 40-46 (in Chinese) doi: 10.7511/jslx20230909003
|
[16] |
Wu J, Zhang C, Xue T, et al. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 82-90
|
[17] |
Wang L, Chan YC, Ahmed F, et al. Deep generative modeling for mechanistic-based learning and design of metamaterial systems. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113377 doi: 10.1016/j.cma.2020.113377
|
[18] |
Dan Y, Zhao Y, Li X, et al. Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials. NPJ Computational Materials, 2020, 6(1): 84 doi: 10.1038/s41524-020-00352-0
|
[19] |
Sundar S, Sundararaghavan V. Database development and exploration of process–microstructure relationships using variational autoencoders. Materials Today Communications, 2020, 25: 101201 doi: 10.1016/j.mtcomm.2020.101201
|
[20] |
Fuglede B, Topsoe F. Jensen-Shannon divergence and Hilbert space embedding BT-IEEE International Symposium on Information Theory, 2004, 31
|
[21] |
Jin X, Wu L, Li X, et al. Predicting aesthetic score distribution through cumulative jensen-shannon divergence. arXiv, 2017: 77-84
|
[22] |
Yang L, Meng X, Karniadakis GE. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. Journal of Computational Physics, 2021, 425: 109913 doi: 10.1016/j.jcp.2020.109913
|
[23] |
Li Q, Xu R, Wu Q, et al. Topology optimization design of quasi-periodic cellular structures based on erode–dilate operators. Computer Methods in Applied Mechanics and Engineering, 2021, 377: 113720 doi: 10.1016/j.cma.2021.113720
|
[24] |
Xu S, Shen J, Zhou S, et al. Design of lattice structures with controlled anisotropy. Materials and Design, 2016, 93: 443-447 doi: 10.1016/j.matdes.2016.01.007
|
[25] |
Dong G, Tang Y, Zhao YF. A 149 line homogenization code for three-dimensional cellular materials written in MATLAB. Journal of Engineering Materials and Technology, 2019, 141(1): 011005 doi: 10.1115/1.4040555
|
[26] |
Zheng L, Kumar S, Kochmann DM. Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy. Computer Methods in Applied Mechanics and Engineering, 2021, 383: 113894 doi: 10.1016/j.cma.2021.113894
|
[27] |
Kumar S, Tan S, Zheng L, et al. Inverse-designed spinodoid metamaterials. NPJ Computational Materials, 2020, 6(1): 73 doi: 10.1038/s41524-020-0341-6
|
[28] |
Mittra E, Rubin C, Qin YX. Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone. Journal of Biomechanics, 2005, 38(6): 1229-1237 doi: 10.1016/j.jbiomech.2004.06.007
|
[29] |
Maquer G, Musy SN, Wandel J, et al. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. Journal of Bone and Mineral Research, 2015, 30(6): 1000-1008 doi: 10.1002/jbmr.2437
|
[30] |
Xiao P, Zhang T, Dong XN, et al. Prediction of trabecular bone architectural features by deep learning models using simulated DXA images. Bone Reports, 2020, 13: 100295 doi: 10.1016/j.bonr.2020.100295
|
[31] |
Callens SJP, Tourolle né Betts DC, Müller R, et al. The local and global geometry of trabecular bone. Acta Biomaterialia, 2021, 130: 343-361 doi: 10.1016/j.actbio.2021.06.013
|
[32] |
Steiner L, Synek A, Pahr DH. Bone reports comparison of different microct-based morphology assessment tools using human trabecular bone. Bone Reports, 2020, 12: 100261 doi: 10.1016/j.bonr.2020.100261
|
[33] |
Mickel W, Kapfer SC, Schröder-Turk GE, et al. Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. Journal of Chemical Physics, 2013, 138(4): 044501
|
[34] |
Schröder-Turk GE, Mickel W, Kapfer SC, et al. Minkowski tensor shape analysis of cellular, granular and porous structures. Advanced Materials, 2011, 23(22-23): 2535-2553 doi: 10.1002/adma.201100562
|
[35] |
Zysset PK, Curnier A. An alternative model for anisotropic elasticity based on fabric tensors. Mechanics of Materials, 1995, 21(4): 243-250 doi: 10.1016/0167-6636(95)00018-6
|
[36] |
Zysset PK. A review of morphology-elasticity relationships in human trabecular bone: Theories and experiments. Journal of Biomechanics, 2003, 36(10): 1469-1485 doi: 10.1016/S0021-9290(03)00128-3
|
[37] |
Kirby M, Morshed AH, Gomez J, et al. Three-dimensional rendering of trabecular bone microarchitecture using a probabilistic approach. Biomechanics and Modeling in Mechanobiology, 2020, 19(4): 1263-1281 doi: 10.1007/s10237-020-01286-8
|
[38] |
Yan Z, Hu Y, Li X, et al. Data-driven based characterization of anisotropic mechanical properties for cancellous bone from low-resolution CT images. IEEE Transactions on Biomedical Engineering, 2024, 71(2): 689-699 doi: 10.1109/TBME.2023.3315846
|
[39] |
Yan Z, Hu Y, Shi H, et al. Experimentally characterizing the spatially varying anisotropic mechanical property of cancellous bone via a Bayesian calibration method. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138: 105643 doi: 10.1016/j.jmbbm.2022.105643
|
[40] |
Rincón-Kohli L, Zysset PK. Multi-axial mechanical properties of human trabecular bone. Biomechanics and Modeling in Mechanobiology, 2009, 8(3): 195-208 doi: 10.1007/s10237-008-0128-z
|
[41] |
Ovesy M, Voumard B, Zysset P. A nonlinear homogenized finite element analysis of the primary stability of the bone–implant interface. Biomechanics and Modeling in Mechanobiology, 2018, 17(5): 1471-1480 doi: 10.1007/s10237-018-1038-3
|
[42] |
Charlebois M, Jirásek M, Zysset PK. A nonlocal constitutive model for trabecular bone softening in compression. Biomechanics and Modeling in Mechanobiology, 2010, 9(5): 597-611 doi: 10.1007/s10237-010-0200-3
|
[43] |
Meng X, Yang L, Mao Z, et al. Learning Functional Priors and Posteriors from Data and Physics. Journal of Computational Physics, 2022, 457: 111073 doi: 10.1016/j.jcp.2022.111073
|
[44] |
Nguyen T, Francom DC, Luscher DJ, et al. Bayesian calibration of a physics-based crystal plasticity and damage model. Journal of the Mechanics and Physics of Solids, 2021, 153: 104284
|
[45] |
Brunton SL, Proctor JL, Kutz JN, et al. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(15): 3932-3937
|
[46] |
Munford MJ, Ng KCG, Jeffers JRT. Mapping the multi-directional mechanical properties of bone in the proximal tibia. Advanced Functional Materials, 2020, 30(46): 2004323 doi: 10.1002/adfm.202004323
|
[47] |
Liu P, Liang X, Li Z, et al. Decoupled effects of bone mass, microarchitecture and tissue property on the mechanical deterioration of osteoporotic bones. Composites Part B: Engineering, 2019, 177: 107436 doi: 10.1016/j.compositesb.2019.107436
|
[48] |
Li Z, Liu P, Yuan Y, et al. Loss of longitudinal superiority marks the microarchitecture deterioration of osteoporotic cancellous bones. Biomechanics and Modeling in Mechanobiology, 2021, 20(5): 2013-2030 doi: 10.1007/s10237-021-01491-z
|
[49] |
Allen MJ, Houlton JE, Adams SB, et al. The surgical anatomy of the stifle joint in sheep. Veterinary Surgery, 1998, 27: 596-605 doi: 10.1111/j.1532-950X.1998.tb00536.x
|