Citation: | Zhang Tao, Li Mingfeng, Wang Kun, Wu Chunyan, Song Bo, Yang Shuying. Experimental study on the flow law of slickwater in the near well area of hydraulic fracture based on piv/pod. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1-18. DOI: 10.6052/0459-1879-24-256 |
[1] |
刘培培, 何定凯, 潘柯羽等. 非常规油藏多功能滑溜水体系研究与应用. 精细石油化工进展, 2022, 23(6): 1-5 (Liu Peipei, He Dingkai, Pan Keyu, et al. Research and application of multifunctional slick water system in unconventional oil reservoirs. Advances in Fine Petrochemicals, 2022, 23(6): 1-5 (in Chinese) doi: 10.3969/j.issn.1009-8348.2022.06.001
Liu Peipei, He Dingkai, Pan Keyu, et al. Research and application of multifunctional slick water system in unconventional oil reservoirs. Advances in Fine Petrochemicals, 2022, 23(6): 1-5 (in Chinese) doi: 10.3969/j.issn.1009-8348.2022.06.001
|
[2] |
Chen P, Chang H, Fu Y, et al. Prediction of drag reduction in slick water fracturing by two general model. Frontiers in Energy Research, 2022, 10: 905187 doi: 10.3389/fenrg.2022.905187
|
[3] |
刘晓瑞, 周福建, 石华强等. 聚合物减阻剂微观减阻机理研究. 石油化工, 2017, 46(1): 97-102 (Liu Xiaorui, Zhou Fujian, Shi Huaqiang, et al. Research on microscopic drag reduction mechanism of polymer drag reducing agents. Petrochemical Technology, 2017, 46(1): 97-102 (in Chinese) doi: 10.3969/j.issn.1000-8144.2017.01.014
Liu Xiaorui, Zhou Fujian, Shi Huaqiang, et al. Research on microscopic drag reduction mechanism of polymer drag reducing agents. Petrochemical Technology, 2017, 46(1): 97-102 (in Chinese) doi: 10.3969/j.issn.1000-8144.2017.01.014
|
[4] |
刘倩, 管保山, 刘玉婷等. 滑溜水压裂液用降阻剂的研究与应用进展. 油田化学, 2020, 37(3): 545-551 (Liu Qian, Guan Baoshan, Liu Yuting, et al. Research and application progress of drag reducing agents for slick water fracturing fluids. Oilfield Chemistry, 2020, 37(3): 545-551 (in Chinese)
Liu Qian, Guan Baoshan, Liu Yuting, et al. Research and application progress of drag reducing agents for slick water fracturing fluids. Oilfield Chemistry, 2020, 37(3): 545-551 (in Chinese)
|
[5] |
Wendland E, Himmelsbach T. Transport simulation with stochastic aperture for a single fracture-comparison with a laboratory experiment. Advances in Water Resources, 2002, 25(1): 19-32 doi: 10.1016/S0309-1708(01)00027-6
|
[6] |
郭建春, 周航宇, 唐堂等. 非常规储层压裂支撑剂输送实验及数值模拟研究进展. 钻采工艺, 2022, 45(3): 48-54 (Guo Jianchun, Zhou Hangyu, Tang Tang, et al. Progress in experimental and numerical simulation of proppant delivery for fracturing unconventional reservoirs. Drilling and Production Technology, 2022, 45(3): 48-54 (in Chinese) doi: 10.3969/J.ISSN.1006-768X.2022.03.09
Guo Jianchun, Zhou Hangyu, Tang Tang, et al. Progress in experimental and numerical simulation of proppant delivery for fracturing unconventional reservoirs. Drilling and Production Technology, 2022, 45(3): 48-54 (in Chinese) doi: 10.3969/J.ISSN.1006-768X.2022.03.09
|
[7] |
Peng H, Fan Y, Peng J, et al. Research and application of a proppant transport experimental device for complex fractures in the unconventional reservoir. Geofluids, 2022, 2022(1): 8356470
|
[8] |
郭天魁, 吕明锟, 陈铭等. 体积压裂多分支裂缝支撑剂运移规律. 石油勘探与开发, 2023, 50(4): 832-844 (Guo Tiankui, Lyu Mingkun, Chen Ming, et al. Proppant transportation in multi-branch fractures of volumetric fracturing. Petroleum Exploration and Development, 2023, 50(4): 832-844 (in Chinese) doi: 10.11698/PED.20220767
Guo Tiankui, Lyu Mingkun, Chen Ming, et al. Proppant transportation in multi-branch fractures of volumetric fracturing. Petroleum Exploration and Development, 2023, 50(4): 832-844 (in Chinese) doi: 10.11698/PED.20220767
|
[9] |
Qu H, Xu Y, Hong J, et al. Experimental and visual analysis of proppant-slickwater flow in a large-scaled rough fracture. SPE Journal, 2023, 28(2): 477-495 doi: 10.2118/212283-PA
|
[10] |
Li J, Han X, He S, et al. Effect of proppant sizes and injection modes on proppant transportation and distribution in the tortuous fracture model. Particuology, 2024, 84: 261-280 doi: 10.1016/j.partic.2023.07.002
|
[11] |
林晓云, 谭振宇, 刘志恒等. 海洋涡旋的模拟及PIV测量. 大学物理实验, 2021, 34(3): 40-45 (Lin Xiaoyun, Tan Zhenyu, Liu Zhiheng, et al. Modeling of ocean eddies and PIV measurements. Physical Experiment of College, 2021, 34(3): 40-45 (in Chinese)
Lin Xiaoyun, Tan Zhenyu, Liu Zhiheng, et al. Modeling of ocean eddies and PIV measurements. Physical Experiment of College, 2021, 34(3): 40-45 (in Chinese)
|
[12] |
李恋, 吴亚红, 王明星等. 基于PIV系统的支撑剂运移铺置规律及参数优化. 断块油气田, 2021, 28(5): 696-699 (Li Lian, Wu Yahong, Wang Mingxing, et al. Proppant transport laying law and parameter optimization based on PIV system. Fault-Block Oil and Gas Field, 2021, 28(5): 696-699 (in Chinese)
Li Lian, Wu Yahong, Wang Mingxing, et al. Proppant transport laying law and parameter optimization based on PIV system. Fault-Block Oil and Gas Field, 2021, 28(5): 696-699 (in Chinese)
|
[13] |
Li M, Zeng XJ, Yang RY, et al. Quantitative experimental study on the rule of fluid flow and its influencing factors in hydraulic fractures. Journal of Petroleum Science and Engineering, 2022, 214: 110505 doi: 10.1016/j.petrol.2022.110505
|
[14] |
Lumley JL. Coherent structures in turbulence. Transition and Turbulence, 1981: 215-242
|
[15] |
Ruelle D, Takens F. On the nature of turbulence. Communications in Mathematical Physics, 1971, 20(3): 167-192 doi: 10.1007/BF01646553
|
[16] |
Ball KS, Sirovich L, Keefe LR. Dynamical eigenfunction decomposition of turbulent channel flow. International Journal for Numerical Methods in Fluids, 1991, 12(6): 585-604 doi: 10.1002/fld.1650120606
|
[17] |
Samanta G, Housiadas KD, Beris AN, et al. Data reduction in viscoelastic turbulent channel flows based on extended Karhunen–Loeve analysis. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(19-20): 1386-1399 doi: 10.1016/j.jnnfm.2010.07.003
|
[18] |
陈彬, 刘阁. 槽道流POD重构及湍流动能耗散率分析. 计算物理, 2018, 35(2): 169-177 (Chen Bin, Liu Ge. Analysis of POD reconstruction and turbulent kinetic energy dissipation rate in channel flow. Journal of Computational Physics, 2018, 35(2): 169-177 (in Chinese)
Chen Bin, Liu Ge. Analysis of POD reconstruction and turbulent kinetic energy dissipation rate in channel flow. Journal of Computational Physics, 2018, 35(2): 169-177 (in Chinese)
|
[19] |
刘怡昕, 赵朋龙, 陈耀慧等. 基于本征正交分解的湍流边界层中条带结构实验研究. 南京理工大学学报, 2019, 43(6): 752-758 (Liu Yixin, Zhao Penglong, Chen Yaohui, et al. Experimental study of strip structure in turbulent boundary layer based on intrinsic orthogonal decomposition. Journal of Nanjing University of Technology, 2019, 43(6): 752-758 (in Chinese)
Liu Yixin, Zhao Penglong, Chen Yaohui, et al. Experimental study of strip structure in turbulent boundary layer based on intrinsic orthogonal decomposition. Journal of Nanjing University of Technology, 2019, 43(6): 752-758 (in Chinese)
|
[20] |
Wei Z, Zang B, New TH, et al. A proper orthogonal decomposition study on the unsteady flow behaviour of a hydrofoil with leading-edge tubercles. Ocean Engineering, 2016, 121: 356-368 doi: 10.1016/j.oceaneng.2016.05.043
|
[21] |
Buhl S, Hartmann F, Hasse C. Identification of large-scale structure fluctuations in IC engines using POD-based conditional averaging. Oil and Gas Science and Technology, 2016, 71(1): 1-16 doi: 10.2516/ogst/2015021
|
[22] |
路宽, 张亦弛, 靳玉林等. 本征正交分解在数据处理中的应用及展望. 动力学与控制学报, 2022, 20(5): 20-33 (Lu Kuan, Zhang Yichi, Jin Yulin, et al. Applications and perspectives of intrinsic orthogonal decomposition in data processing. Journal of Dynamics and Control, 2022, 20(5): 20-33 (in Chinese)
Lu Kuan, Zhang Yichi, Jin Yulin, et al. Applications and perspectives of intrinsic orthogonal decomposition in data processing. Journal of Dynamics and Control, 2022, 20(5): 20-33 (in Chinese)
|
[23] |
许自舟, 曾苇, 邵秘华等. DPIV技术测量流冰速度应用研究. 海洋环境科学, 2007, 26(1): 81-84 (Xu Zizhou, Zeng Wei, Shao Mihua, et al. An applied study of the DPIV technique for measuring the velocity of drift ice. Marine Environmental Science, 2007, 26(1): 81-84 (in Chinese) doi: 10.3969/j.issn.1007-6336.2007.01.020
Xu Zizhou, Zeng Wei, Shao Mihua, et al. An applied study of the DPIV technique for measuring the velocity of drift ice. Marine Environmental Science, 2007, 26(1): 81-84 (in Chinese) doi: 10.3969/j.issn.1007-6336.2007.01.020
|
[24] |
唐春晓, 李恩邦, 吴冠南. 多波长数字粒子图像测速技术研究. 光电子·激光, 2012, 23(8): 1550-1556 (Tang Chunxiao, Li Enbang, Wu Guannan. Research on multi-wavelength digital particle image velocimetry technology. Journal of Optoelectronics·Laser, 2012, 23(8): 1550-1556 (in Chinese)
Tang Chunxiao, Li Enbang, Wu Guannan. Research on multi-wavelength digital particle image velocimetry technology. Journal of Optoelectronics·Laser, 2012, 23(8): 1550-1556 (in Chinese)
|
[25] |
何旭, 高希彦, 梁桂华等. 基于互相关算法的粒子图像测速技术. 大连理工大学学报, 2003, 43(2): 164-167 (He Xu, Gao Xiyan, Liang Guihua, et al. Particle image velocimetry based on mutual correlation algorithm. Journal of Dalian University of Technology, 2003, 43(2): 164-167 (in Chinese) doi: 10.3321/j.issn:1000-8608.2003.02.009
He Xu, Gao Xiyan, Liang Guihua, et al. Particle image velocimetry based on mutual correlation algorithm. Journal of Dalian University of Technology, 2003, 43(2): 164-167 (in Chinese) doi: 10.3321/j.issn:1000-8608.2003.02.009
|
[26] |
Gharali K, Johnson DA. Pressure and acceleration determination methods using PIV velocity data//Fluids Engineering Division Summer Meeting. 2008, 4840, 1: 657-664
|
[27] |
彭笙洋. 基于涡分析法的贯流式水轮机固液两相流数值模拟. [硕士论文]. 成都: 西华大学, 2020 (Peng Shengyang. Numerical simulation of solid-liquid two-phase flow in a tubular turbine based on vortex analysis method. [Master Thesis]. Chengdu: Xihua University, 2020 (in Chinese)
Peng Shengyang. Numerical simulation of solid-liquid two-phase flow in a tubular turbine based on vortex analysis method. [Master Thesis]. Chengdu: Xihua University, 2020 (in Chinese)
|
[28] |
Hunt JC R, Wray AA, Moin P. Eddies, streams, and convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases, 1988, 2(1): 193-208
|
[29] |
孔令华, 段雅丽, 陈先进. Burgers-Korteweg-de Vries 复合方程的格子 Boltzmann 方法模拟. 计算物理, 2015, 32(6): 639-648 (Kong Linghua, Duan Yali, Chen Xianjin. Lattice Boltzmann method simulations of the Burgers-Korteweg-de Vries complex equation. Journal of Computational Physics, 2015, 32(6): 639-648 (in Chinese) doi: 10.3969/j.issn.1001-246X.2015.06.003
Kong Linghua, Duan Yali, Chen Xianjin. Lattice Boltzmann method simulations of the Burgers-Korteweg-de Vries complex equation. Journal of Computational Physics, 2015, 32(6): 639-648 (in Chinese) doi: 10.3969/j.issn.1001-246X.2015.06.003
|
[30] |
Sheng J, Meng H, Fox RO. A large eddy PIV method for turbulence dissipation rate estimation. Chemical Engineering Science, 2000, 55(20): 4423-4434 doi: 10.1016/S0009-2509(00)00039-7
|
[31] |
Pope SB. Turbulent flows. Measurement Science and Technology, 2001, 12(11): 2020-2021
|
[1] | Wang Qinchao, Li Shichao, Gao Hongli, Ma Guilin, Wu Guang, Duan Zhiqin. RESEARCH ON INTELLIGENT IDENTIFICATION ALGORITHMS FOR SHORT-TERM AERODYNAMICS OF HYPERSONIC WIND TUNNELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 688-696. DOI: 10.6052/0459-1879-21-484 |
[2] | Nie Shaojun, Wang Yunpeng. SIGNAL ANALYSIS AND PROCESSING OF SHOCK TUNNEL BALANCE BASED ON TIME-FREQUENCY TRANSFORM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 232-243. DOI: 10.6052/0459-1879-21-387 |
[3] | Nie Shaojun, Wang Yue, Wang Yunpeng, Zhao Min, Sui Jing. APPLICATION OF RECURRENT NEURAL NETWORK IN RESEARCH OF INTELLIGENT WIND TUNNEL BALANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2336-2344. DOI: 10.6052/0459-1879-21-168 |
[4] | Gu Liuning, Gong Wenran, Shao Xinxing, Chen Jie, Dong Zhiqiang, Wu Gang, He Xiaoyuan. REAL TIME MEASUREMENT AND ANALYSIS OF FULL SURFACE CRACKING CHARACTERISTICS OF CONCRETE BASED ON PRINCIPAL STRAIN FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1962-1970. DOI: 10.6052/0459-1879-21-107 |
[5] | Wang Yunpeng, Yang Ruixin, Nie Shaojun, Jiang Zonglin. DEEP-LEARNING-BASED INTELLIGENT FORCE MEASUREMENT SYSTEM USING IN A SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1304-1313. DOI: 10.6052/0459-1879-20-190 |
[6] | Gu Mengmeng, Wei Gang, Deng Bing, Du Hui, Wu Junlin. EXPERIMENTAL INVESTIGATION ON THE EVOLUTION OF INTERNAL SOLITARY WAVE OVER A RIDGE AND ITS ACTING FORCES ON A SUBMERGED SLENDER BODY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1260-1271. DOI: 10.6052/0459-1879-16-322 |
[7] | Meng Baoqing, Han Guilai, Jiang Zonglin. THEORETICAL INVESTIGATION ON AERODYNAMIC FORCE MEASUREMENT INTERFERED BY STRUCTURAL VIBRATIONS IN LARGE SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 102-110. DOI: 10.6052/0459-1879-15-152 |
[8] | Jiang Zonglin, Li Jinping, Zhao Wei, Liu Yunfeng, Yu Hongru. INVESTIGATING INTO TECHNIQUES FOR EXTENDING THE TEST-DURATION OF DETONATION-DRIVEN SHOCK TUNNELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 824-831. DOI: 10.6052/0459-1879-12-160 |
[9] | MEASUREMENT OF STRAIN FACTOR OF COMPOSITES PLATE USING MOIRE INTERFEROMETRY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(5): 636-640. DOI: 10.6052/0459-1879-1997-5-1995-278 |
[10] | THE STUDY OF THE APPARATUS OF TENSION SHB USED AT HIGH STRAIN RATE AND MEASURING TECHNIQUE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(1): 99-105. DOI: 10.6052/0459-1879-1994-1-1995-526 |
1. |
钱致光,任宗金,王宇航,王郁赫,徐馨. 压电杆式天平六维力测量研究. 振动与冲击. 2024(17): 177-183 .
![]() | |
2. |
焦林虎,任宗金,张军,李小刚,王碧玲. 六维压电风洞盒式天平研究. 传感器与微系统. 2024(10): 31-34 .
![]() | |
3. |
聂少军,汪运鹏,王春,姜宗林. 激波风洞测力信号的频域数据深度学习建模分析方法. 振动与冲击. 2023(13): 296-302+315 .
![]() | |
4. |
刘美宽,韩桂来,姜宗林. 高超声速平板边界层数值模拟及试验研究. 气动研究与试验. 2023(05): 51-61 .
![]() | |
5. |
聂少军,汪运鹏. 基于时频变换的激波风洞天平信号分析与处理. 力学学报. 2022(01): 232-243 .
![]() | |
6. |
赵荣娟,刘施然,周正,吴里银,吕治国. 激波风洞超燃冲压发动机推力测量技术研究. 实验流体力学. 2022(04): 103-108 .
![]() | |
7. |
聂少军,王粤,汪运鹏,赵敏,隋婧. 循环神经网络在智能天平研究中的应用. 力学学报. 2021(08): 2336-2344 .
![]() | |
8. |
聂少军,汪运鹏,薛晓鹏,姜宗林. 激波风洞高低压段钢膜片破裂特性研究. 力学学报. 2021(06): 1747-1757 .
![]() | |
9. |
曾慧,杨鸿,罗义成,孙宗祥. 现有高超声速设备的试验能力局限综述. 飞航导弹. 2021(08): 17-23 .
![]() | |
10. |
赵荣娟,黄军,刘施然,吕治国,李国志. ANSYS在压电天平设计中的应用. 实验流体力学. 2020(01): 96-102 .
![]() | |
11. |
汪运鹏,李小刚,姜宗林. 脉冲型天平高精度全自动校准系统. 中国科学:物理学 力学 天文学. 2020(06): 76-86 .
![]() | |
12. |
汪运鹏,杨瑞鑫,聂少军,姜宗林. 基于深度学习技术的激波风洞智能测力系统研究. 力学学报. 2020(05): 1304-1313 .
![]() | |
13. |
赵金山,张志刚,石义雷,陈挺,肖雨,粟斯尧,廖军好,彭治雨. 高超声速飞行器气动热关联换算方法研究. 力学学报. 2018(05): 1235-1245 .
![]() | |
14. |
张小庆,吕金洲,刘伟雄,高昌. 脉冲风洞一体化飞行器测力精度分析. 航空动力学报. 2018(12): 2924-2929 .
![]() | |
15. |
张小庆,王琪,刘伟雄,吕金洲. 高超声速飞行器脉冲风洞测力系统研究. 实验流体力学. 2018(05): 13-18 .
![]() | |
16. |
张子健,刘云峰,姜宗林. 振动激发对高超声速气动力/热影响. 力学学报. 2017(03): 616-626 .
![]() |