Citation: | Dong Xinchang, Zhang Yi. Symmetry and Herglotz type conserved quantities for nonholonomic systems with time delay. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3302-3311. DOI: 10.6052/0459-1879-24-241 |
[1] |
徐鉴, 裴利军. 时滞系统动力学近期研究进展与展望. 力学进展, 2006, 36(1): 17-30 (Xu Jian, Pei Lijun. Advances in dynamics for delayed systems. Advances in Mechanics, 2006, 36(1): 17-30 (in Chinese)
Xu Jian, Pei Lijun. Advances in dynamics for delayed systems. Advances in Mechanics, 2006, 36(1): 17-30 (in Chinese)
|
[2] |
胡海岩, 王在华. 论迟滞与时滞. 力学学报, 2010, 42(4): 740-746 (Hu Haiyan, Wang Zaihua. On hysteresis and retardation. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 740-746 (in Chinese)
Hu Haiyan, Wang Zaihua. On hysteresis and retardation. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 740-746 (in Chinese)
|
[3] |
El’sgol’c LE. Qualitative Methods in Mathematical Analysis. Providence: American Mathematical Society, 1964
|
[4] |
Hughes DK. Variational and optimal control problems with delayed argument. Journal of Optimization Theory and Applications, 1968, 2(1): 1-14 doi: 10.1007/BF00927159
|
[5] |
Frederico GSF, Torres DFM. Noether’s symmetry theorem for variational and optimal control problems with time delay. Numerical Algebra, Control and Optimization, 2012, 2(3): 619-630 doi: 10.3934/naco.2012.2.619
|
[6] |
张毅, 金世欣. 含时滞的非保守系统动力学的Noether对称性. 物理学报, 2013, 62(23): 234502 (Zhang Yi, Jin Shixin. Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica, 2013, 62(23): 234502 (in Chinese) doi: 10.7498/aps.62.234502
Zhang Yi, Jin Shixin. Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica, 2013, 62(23): 234502 (in Chinese) doi: 10.7498/aps.62.234502
|
[7] |
Vladimir D, Roman K, Sergey M. Lagrangian formalism and Noether-type theorems for second-order delay ordinary differential equations. Journal of Physics A: Mathematical and Theoretical, 2023, 56(34): 345203 doi: 10.1088/1751-8121/ace5f6
|
[8] |
Jin SX, Zhang Y. Noether symmetry and conserved quantity for a Hamilton system with time delay. Chinese Physics B, 2014, 23(5): 054501 doi: 10.1088/1674-1056/23/5/054501
|
[9] |
Zhai XH, Zhang Y. Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dynamics, 2014, 77(1-2): 73-86 doi: 10.1007/s11071-014-1274-8
|
[10] |
Noether AE. Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch Physikalische Klasse, 1918, KI(II): 235-257
|
[11] |
Arnold VI, Kozlov VV, Neishtadt AI. Mathematical Aspects of Classical and Celestial Mechanics. Berlin: Springer, 2006
|
[12] |
梅凤翔. 关于Noether定理——分析力学札记之三十. 力学与实践, 2020, 42(1): 66-74 (Mei Fengxiang. On the Noether’s theorem. Mechanics in Engineering, 2020, 42(1): 66-74 (in Chinese)
Mei Fengxiang. On the Noether’s theorem. Mechanics in Engineering, 2020, 42(1): 66-74 (in Chinese)
|
[13] |
傅景礼, 陆晓丹, 项春. 爬壁机器人系统的 Noether 对称性和守恒量. 力学学报, 2022, 54(6): 1680-1693 (Fu Jingli, Lu Xiaodan, Xiang Chun. Noether symmetries and conserved quantities of wall climbing robot system. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1680-1693 (in Chinese)
Fu Jingli, Lu Xiaodan, Xiang Chun. Noether symmetries and conserved quantities of wall climbing robot system. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1680-1693 (in Chinese)
|
[14] |
Zhang Y. Nonshifted dynamics of constrained systems on time scales under Lagrange framework and its Noether’s theorem. Communications in Nonlinear Science and Numerical Simulation, 2022, 108: 106214 doi: 10.1016/j.cnsns.2021.106214
|
[15] |
Herglotz G. Gesammelte Schriften. Göttingen: Vandenhoeck & Ruprecht, 1979
|
[16] |
Guenther RB, Guenther CM, Gottsch JA. The Herglotz lectures on contact transformations and Hamiltonian systems. Toruń: Juliusz Center for Nonlinear Studies, 1996
|
[17] |
Bravetti A. Contact Hamilton dynamics: The concept and its use. Entropy, 2017, 19: 535 doi: 10.3390/e19100535
|
[18] |
Zhan QY, Duan JQ, Li XF, et al. Numerical integration of stochastic contact Hamiltonian systems via stochastic Herglotz variational principle. Physica Scripta, 2023, 98(5): 055211 doi: 10.1088/1402-4896/acc984
|
[19] |
de León M, Lainz M, Muñoz-Lecanda MC. Optimal control, contact dynamics and Herglotz variational problem. Journal of Nonlinear Science, 2023, 33(1): 9 doi: 10.1007/s00332-022-09861-2
|
[20] |
Jordi G, Adrià M. Application of Herglotz’s variational principle to electromagnetic systems with dissipation. International Journal of Geometric Methods in Modern Physics, 2022, 19(10): 2250156 doi: 10.1142/S0219887822501560
|
[21] |
Santos SPS, Martins N, Torres DFM. Variational problems of Herglotz type with time delay: Dubois-Reymond condition and Noether’s first theorem. Discrete and Continuous Dynamical Systems, 2015, 35(9): 4593-4610 doi: 10.3934/dcds.2015.35.4593
|
[22] |
Santos SPS, Martins N, Torres DFM. Noether currents for higher-order variational problems of Herglotz type with time delay. Discrete and Continuous Dynamical Systems, Series S, 2018, 11(1): 91-102 doi: 10.3934/dcdss.2018006
|
[23] |
Zhang Y. Herglotz’s variational problem for non-conservative system with delayed arguments under Lagrangian framework and its Noether’s theorem. Symmetry, 2020, 12(5): 845 doi: 10.3390/sym12050845
|
[24] |
Zhang Y. Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type. International Journal of Non-Linear Mechanics, 2018, 101: 36-43 doi: 10.1016/j.ijnonlinmec.2018.02.010
|
[25] |
Zhang Y. Noether symmetry and conserved quantity for a time-delayed Hamiltonian system of Herglotz type. Royal Society Open Science, 2018, 5(10): 180208 doi: 10.1098/rsos.180208
|
[26] |
Huang LQ, Zhang Y. Herglotz-type vakonomic dynamics and Noether theory of nonholonomic systems with delayed arguments. Chaos, Solitons and Fractals, 2024, 182: 114854 doi: 10.1016/j.chaos.2024.114854
|
[27] |
Zhang Y, Tian X. Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem. Physics Letters A, 2019, 383(8): 691-696 doi: 10.1016/j.physleta.2018.11.034
|
[28] |
Dong XC, Zhang Y. Herglotz-type principle and first integrals for nonholonomic systems in phase space. Acta Mechanica, 2023, 234(12): 6083-6095 doi: 10.1007/s00707-023-03707-y
|
[29] |
梅凤翔, 吴惠彬, 李彦敏. 分析力学史略. 北京: 科学出版社, 2019 (Mei Fengxiang, Wu Huibin, Li Yanmin. A Brief History of Analytical Mechanics. Beijing: Science Press, 2019 (in Chinese)
Mei Fengxiang, Wu Huibin, Li Yanmin. A Brief History of Analytical Mechanics. Beijing: Science Press, 2019 (in Chinese)
|
[30] |
庄红超, 王柠, 董凯伦等. 非完整约束大负重比六足机器人多机动态协同编队避障控制策略. 机械工程学报, 2024, 60(1): 284-295 (Zhuang Hongchao, Wang Ning, Dong Kailun, et al. Obstacle avoidance control strategy of multi-robot dynamic cooperative formation of large-load-ratio six-legged robot under nonholonomic constraints. Journal of Mechanical Engineering, 2024, 60(1): 284-295 (in Chinese) doi: 10.3901/JME.2024.01.284
Zhuang Hongchao, Wang Ning, Dong Kailun, et al. Obstacle avoidance control strategy of multi-robot dynamic cooperative formation of large-load-ratio six-legged robot under nonholonomic constraints. Journal of Mechanical Engineering, 2024, 60(1): 284-295 (in Chinese) doi: 10.3901/JME.2024.01.284
|
[31] |
Xiong J, Wang N, Liu C. Bicycle dynamics and its circular solution on a revolution surface. Acta Mechanica Sinica, 2020, 36(1): 220-233 doi: 10.1007/s10409-019-00914-6
|
[32] |
徐宏, 傅景礼. 基于伺服电机驱动的进给传动系统扭转振动的Lie群分析方法. 力学学报, 2023, 55(9): 2000-2009 (Xu Hong, Fu Jingli. Lie group analysis for torsional vibration of serve motor driven feeder driven system. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2000-2009 (in Chinese)
Xu Hong, Fu Jingli. Lie group analysis for torsional vibration of serve motor driven feeder driven system. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2000-2009 (in Chinese)
|
[33] |
Wang BF, Li S, Guo J, et al. Car-like mobile robot path planning in rough terrain using multi-objective particle swarm optimization algorithm. Neurocomputing, 2018, 282: 42-51 doi: 10.1016/j.neucom.2017.12.015
|
[34] |
王囡囡, 熊佳铭, 刘才山. 自行车动力学建模及稳定性分析研究综述. 力学学报, 2020, 52(4): 917-927 (Wang Nannan, Xiong Jiaming, Liu Caishan. Review of dynamic modeling and stability analysis of a bicycle. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 917-927 (in Chinese)
Wang Nannan, Xiong Jiaming, Liu Caishan. Review of dynamic modeling and stability analysis of a bicycle. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 917-927 (in Chinese)
|
[35] |
Cara FE. Ordinary Differential Equations and Applications. Singapore: World Scientific Publishing Company, 2023
|
[36] |
梅凤翔. 李群李代数对约束力学系统的应用. 北京: 科学出版社, 1999 (Mei Fengxiang. Applications of Lie Group Lie Algebras to Systems of Constrained Mechanics. Beijing: Science Press, 1999 (in Chinese)
Mei Fengxiang. Applications of Lie Group Lie Algebras to Systems of Constrained Mechanics. Beijing: Science Press, 1999 (in Chinese)
|
[1] | Xu Huidong, Wang Yiping, He Dongping, Zhou Biliu, Zhang Wei. RESEARCH ON THE VIBRATION REDUCTION CHARACTERISTICS OF ROLLING MILL ROLL SYSTEM WITH ACTIVE AND PASSIVE DAMPING SHOCK ABSORBERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2713-2730. DOI: 10.6052/0459-1879-24-079 |
[2] | Zhang Yi. NOETHER'S THEOREM OF HERGLOTZ FORM FOR GENERALIZED CHAPLYGIN SYSTEMS WITH NONCONSERVATIVE FORCES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2695-2702. DOI: 10.6052/0459-1879-24-150 |
[3] | Zhang Wanjie, Niu Jiangchuan, Shen Yongjun, Yang Shaopu, Liu Jiaqi. TIME-DELAYED SEMI-ACTIVE CONTROL OF DAMPING SYSTEM WITH FRACTIONAL-ORDER BINGHAM MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 173-183. DOI: 10.6052/0459-1879-21-467 |
[4] | Tian Xue, Zhang Yi. CAPUTO Δ-TYPE FRACTIONAL TIME-SCALES NOETHER THEOREM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2010-2022. DOI: 10.6052/0459-1879-21-108 |
[5] | Lan Yuqun, Guan Linan, Gu Huaguang. THE COMPLEX DYNAMICS OF ABNORMAL PHENOMENON OF NEURAL ELECTRONIC OSCILLATIONS INDUCED BY NEGATIVE FEEDBACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1122-1133. DOI: 10.6052/0459-1879-19-038 |
[6] | Li Shuai, Zhou Jilei, Ren Chuanbo, Shao Sujuan. The research of time delay vibration control with time - varying parameters[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 99-108. DOI: 10.6052/0459-1879-17-207 |
[7] | Zhang Yi. GENERALIZED VARIATIONAL PRINCIPLE OF HERGLOTZ TYPE FOR NONCONSERVATIVE SYSTEM IN PHASE SPACE AND NOETHER'S THEOREM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1382-1389. DOI: 10.6052/0459-1879-16-086 |
[8] | Shen Yongjun, Zhao Yongxiang, Tian Jiayu, Yang Shaopu. DYNAMICAL ANALYSIS ON A KIND OF SEMI-ACTIVE SUSPENSION WITH TIME DELAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 755-762. DOI: 10.6052/0459-1879-13-017 |
[9] | Longxiang Chen, Guoping Cai. Experimental study of variable structure control in time-delay for a flexible beam under forced vibration[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 410-417. DOI: 10.6052/0459-1879-2009-3-2008-459 |
[10] | Longxiang Chen, Guoping Cai. Experimental study on active control of a rotating flexible beam with time delay[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 520-527. DOI: 10.6052/0459-1879-2008-4-2008-010 |
1. |
李利萍,余泓浩,李秋雨,潘一山. 砂岩不同含水特性对超低摩擦效应影响试验研究. 力学学报. 2025(03): 687-700 .
![]() | |
2. |
胡学锦,李利萍,潘一山,唐巨鹏. 超低摩擦型冲击地压前兆特征及煤岩界面属性影响研究. 力学学报. 2025(05): 1117-1130 .
![]() | |
3. |
李利萍,胡学锦,潘一山,李明会. 煤的冲击倾向性对深部煤岩界面超低摩擦效应影响研究. 岩土力学. 2024(06): 1633-1642 .
![]() | |
4. |
李忠勤,刘赵龙. 基于ISABO-SVM的冲击地压危险等级预测. 黑龙江科技大学学报. 2024(04): 611-616 .
![]() | |
5. |
李利萍,胡学锦,潘一山,李明会. 煤岩组合体冲击倾向性对超低摩擦型冲击地压的影响机制. 采矿与岩层控制工程学报. 2024(04): 23-33 .
![]() | |
6. |
郑建伟,张修峰,鞠文君,王存文,韩跃勇,李国营,陈洋,李海涛,郝晋伟,刘彪. 层面位置对煤岩组合体动态破坏特性影响规律研究. 煤田地质与勘探. 2024(10): 97-105 .
![]() |