EI、Scopus 收录
中文核心期刊
Cai Heng, Xi Jiale, Fan Yiming, Chen Yuan. Investigation of visco-elastic mechanical behaviors of UV-curing resin based on finite volume method. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3262-3273. DOI: 10.6052/0459-1879-24-232
Citation: Cai Heng, Xi Jiale, Fan Yiming, Chen Yuan. Investigation of visco-elastic mechanical behaviors of UV-curing resin based on finite volume method. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3262-3273. DOI: 10.6052/0459-1879-24-232

INVESTIGATION OF VISCO-ELASTIC MECHANICAL BEHAVIORS OF UV-CURING RESIN BASED ON FINITE VOLUME METHOD

  • Received Date: May 15, 2024
  • Accepted Date: August 07, 2024
  • Published Date: August 08, 2024
  • The complexity of the ultraviolet-curing (UV-curing) polymer system, comprised of various resins, contributes to the uncertainty in its viscoelastic mechanical behaviors as it evolves over time. By using polyurethane acrylate (PUA) as a representative material, the fractional order viscoelastic constitutive is incorporated into the second-order displacement expanded finite volume model to explore the mechanical behaviors of UV-curing resin in this paper. Firstly, the continuity conditions of cell surface and the global stiffness matrix of the numerical model are determined in accordance with loading conditions, enabling the explicit calculation of unknown surface displacements for all cells. To investigate the viscoelastic behavior of UV-curing resin with respect to varying strain rates, a fractional-order finite deformation Kelvin-Voigt viscoelastic model is introduced to establish the stress-strain constitutive relationship. Secondly, parameters of the elastic and viscous components in the constitutive model are determined through uniaxial tensile tests at strain rates of 10−4, 10−3, 10−2, and 10 s−1. Finally, digital image correlation (DIC) analysis is performed in conjunction with uniaxial tensile tests at various strain rates to compare the experimental results and evaluate the computational accuracy of the numerical model. It is indicated that the established numerical model can effectively predict the visco-elastic mechanical behaviors of light-cured resin under different strain rates, with an average prediction error of 1.98%.
  • [1]
    Bakhshandeh E, Sobhani S, Croutxé-Barghorn C, et al. Siloxane- modified waterborne UV-curable polyurethane acrylate coatings: Chemorheology and viscoelastic analyses. Progress in Organic Coatings, 2021, 158: 106323 doi: 10.1016/j.porgcoat.2021.106323
    [2]
    Hu R, Zhang X, Chen Y, et al. Characterization and prediction of the nonlinear creep behavior of 3D-printed polyurethane acrylate. Additive Manufacturing, 2022, 50: 102583 doi: 10.1016/j.addma.2021.102583
    [3]
    张毅, 薛世峰, 韩丽美等. 半结晶聚合物损伤演化的试验表征与数值模拟. 力学学报, 2021, 53(6): 1671-1683 (Zhang Yi, Xue Shifeng, Han Limei, et al. Experimental characterization and numerical simulation of damage evolution in semi-crystalline. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1671-1683 (in Chinese)

    Zhang Yi, Xue Shifeng, Han Limei, et al. Experimental characterization and numerical simulation of damage evolution in semi-crystalline. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1671-1683 (in Chinese)
    [4]
    田传帅, 詹林, 肖锐. 基于超弹性模型的玻璃态聚合物应变强化行为研究. 力学学报, 2023, 55(7): 1473-1483 (Tian Chuanshuai, Zhan Lin, Xiao Rui. Modelling strain hardening of glassy polymers based on hyperelastic models. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1473-1483 (in Chinese)

    Tian Chuanshuai, Zhan Lin, Xiao Rui. Modelling strain hardening of glassy polymers based on hyperelastic models. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1473-1483 (in Chinese)
    [5]
    Hossain M, Navaratne R, Perić D. 3D printed elastomeric polyurethane: Viscoelastic experimental characterizations and constitutive modelling with nonlinear viscosity functions. International Journal of Non-Linear Mechanics, 2020, 126: 103546 doi: 10.1016/j.ijnonlinmec.2020.103546
    [6]
    Du Z, Yang Y, Wang Z, et al. A finite strain visco-hyperelastic damage model for rubber-like materials: Theory and numerical implementation. Acta Mechanica Sinica, 2023, 39(3): 222473 doi: 10.1007/s10409-023-22473-x
    [7]
    Ho CH, Romero P. Characterizing the low-temperature viscoelastic behavior of asphalt mixtures: A comparative study. International Journal of Pavement Research and Technology, 2013, 6(5): 479
    [8]
    Alizadeh N, Celestine AN, Auad ML, et al. Mechanical characterization and modeling stress relaxation behavior of acrylic-polyurethane-based graft-interpenetrating polymer networks. Polymer Engineering & Science, 2021, 61(5): 1299-1309
    [9]
    Meng R, Yin D, Drapaca CS. A variable order fractional constitutive model of the viscoelastic behavior of polymers. International Journal of Non-Linear Mechanics, 2019, 113: 171-177 doi: 10.1016/j.ijnonlinmec.2019.04.002
    [10]
    Shariyat M, Mohammadjani R. 3D nonlinear variable strain-rate-dependent-order fractional thermoviscoelastic dynamic stress investigation and vibration of thick transversely graded rotating annular plates/discs. Applied Mathematical Modelling, 2020, 84: 287-323 doi: 10.1016/j.apm.2020.03.023
    [11]
    Burlon A, Alotta G, Di Paola M, et al. An original perspective on variable-order fractional operators for viscoelastic materials. Meccanica, 2021, 56: 769-784 doi: 10.1007/s11012-021-01316-4
    [12]
    Meng R, Cao L, Zhang Q. Study on the performance of variable-order fractional viscoelastic models to the order function parameters. Applied Mathematical Modelling, 2023, 121: 430-444 doi: 10.1016/j.apm.2023.05.017
    [13]
    Adolfsson K, Enelund M, Olsson P. On the fractional order model of viscoelasticity. Mechanics of Time-dependent Materials, 2005, 9: 15-34 doi: 10.1007/s11043-005-3442-1
    [14]
    顾建平, 孙慧玉, 方建士等. 热致非晶态形状记忆聚合物的热黏弹性参数及回复行为. 高分子材料科学与工程, 2016, 32(6): 107-112 (Gu Jianping, Sun Huiyu, Fang Jianshi, et al. Thermovisoelastic parameters and recovery behaviors of thermally activated amorphous shape memory polymers. Polymer Materials Science & Engineering, 2016, 32(6): 107-112 (in Chinese)

    Gu Jianping, Sun Huiyu, Fang Jianshi, et al. Thermovisoelastic parameters and recovery behaviors of thermally activated amorphous shape memory polymers. Polymer Materials Science & Engineering, 2016, 32(6): 107-112 (in Chinese)
    [15]
    Drozdov AD. Fractional differential models in finite viscoelasticity. Acta Mechanica, 1997, 124(1): 155-180
    [16]
    Sumelka W, Voyiadjis GZ. A hyperelastic fractional damage material model with memory. International Journal of Solids and Structures, 2017, 124: 151-160 doi: 10.1016/j.ijsolstr.2017.06.024
    [17]
    尹耀得, 赵德敏, 刘建林等. 丙烯酸弹性体的率相关分数阶黏弹性模型研究. 力学学报, 2022, 54(1): 154-162 (Yin Yaode, Zhao Demin, Liu Jianlin, et al. Study on The Rate Dependency of Acrylic Elastomer Based Fractional viscoelastic model. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 154-162 (in Chinese)

    Yin Yaode, Zhao Demin, Liu Jianlin, et al. Study on The Rate Dependency of Acrylic Elastomer Based Fractional viscoelastic model. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 154-162 (in Chinese)
    [18]
    Taylor GA, Bailey C, Cross M. Solution of the elastic/visco-plastic constitutive equations: A finite volume approach. Applied Mathematical Modelling, 1995, 19(12): 746-760 doi: 10.1016/0307-904X(95)00093-Y
    [19]
    Demirdzic I, Martinovic P, Ivankovic A. Numerical simulation of thermal deformation in welded workpiece. Zavarivanje, 1988, 31(5): 209-219
    [20]
    Cavalcante M, Pindera MJ, Khatam H. Finite-volume micromechanics of periodic materials: Past, present and future. Composites Part B: Engineering, 2012, 43(6): 2521-2543 doi: 10.1016/j.compositesb.2012.02.006
    [21]
    Sevilla R, Giacomini M, Huerta A. A face-centred finite volume method for second-order elliptic problems. International Journal for Numerical Methods in Engineering, 2018, 115(8): 986-1014 doi: 10.1002/nme.5833
    [22]
    Ivanova EA, Jatar Montaño LE. A new approach to solving the solid mechanics problems with matter supply. Continuum Mechanics and Thermodynamics, 2021, 33(4): 1829-1855 doi: 10.1007/s00161-021-01014-2
    [23]
    Hassan OI, Ghavamian A, Lee CH, et al. An upwind vertex centred finite volume algorithm for nearly and truly incompressible explicit fast solid dynamic applications: Total and updated lagrangian formulations. Journal of Computational Physics: X, 2019, 3: 100025
    [24]
    Cardiff P, Tuković Ž, Jasak H, et al. A block-coupled finite volume methodology for linear elasticity and unstructured meshes. Computers & Structures, 2016, 175: 100-122
    [25]
    Cardiff P, Demirdžić I. Thirty years of the finite volume method for solid mechanics. Archives of Computational Methods in Engineering, 2021, 28(5): 3721-3780 doi: 10.1007/s11831-020-09523-0
    [26]
    Scolaro A, Fiorina C, Clifford I, et al. Development of a semi-implicit contact methodology for finite volume stress solvers. International Journal for Numerical Methods in Engineering, 2022, 123(2): 309-338 doi: 10.1002/nme.6857
    [27]
    Soar P, Kao A, Pericleous K. The impact of two and three dimensional assumptions on coupled structural mechanics and microstructure solidification modelling. Crystals, MDPI, 2023, 13(1): 114 doi: 10.3390/cryst13010114
    [28]
    Castrillo P, Schillaci E, Rigola J. High-order cell-centered finite volume method for solid dynamics on unstructured meshes. Computers & Structures, 2024, 295: 107288
    [29]
    Cai H, Ye J, Shi J, et al. A new two-step modeling strategy for random micro-fiber reinforced composites with consideration of primary pores. Composites Science and Technology, 2022, 218: 109122 doi: 10.1016/j.compscitech.2021.109122
    [30]
    Askarian AR, Permoon MR, Shakouri M. Vibration analysis of pipes conveying fluid resting on a fractional Kelvin-Voigt viscoelastic foundation with general boundary conditions. International Journal of Mechanical Sciences, 2020, 179: 105702 doi: 10.1016/j.ijmecsci.2020.105702
    [31]
    Yao Q, Dong P, Zhao Z, et al. Temperature dependent tensile fracture strength model of rubber materials based on Mooney-Rivlin model. Engineering Fracture Mechanics, 2023, 292: 109646 doi: 10.1016/j.engfracmech.2023.109646
    [32]
    Braconnier DJ, Jensen RE, Peterson AM. Processing parameter correlations in material extrusion additive manufacturing. Additive Manufacturing, 2020, 31: 100924 doi: 10.1016/j.addma.2019.100924
    [33]
    马建章. 基于 Workbench 的导电橡胶 Mooney-Rivlin 参数拟合与应用. 无线电工程, 2017, 47(10): 79-82 (Ma Jianzhang. Mooney-rivlin parameter fitting and application of conductive rubber based on workbench. Radio Engineering, 2017, 47(10): 79-82 (in Chinese)

    Ma Jianzhang. Mooney-rivlin parameter fitting and application of conductive rubber based on workbench. Radio Engineering, 2017, 47(10): 79-82 (in Chinese)
    [34]
    Jin L, Zhao D, Liu J. A visco-hyperelastic constitutive model for rubber considering the strain level and one case study in the sealing packer. Acta Mechanica Solida Sinica, 2023, 36(5): 710-723 doi: 10.1007/s10338-023-00397-w
  • Related Articles

    [1]Zhou Rui, Xiong Yukai, Chu Jielei, Kan Qianhua, Kang Guozheng, Zhang Xu. PARAMETER IDENTIFICATION OF NONLOCAL CRYSTAL PLASTIC MODEL BASED ON MACHINE LEARNING AND GENETIC ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 751-762. DOI: 10.6052/0459-1879-23-479
    [2]Wei Xinyu, Sang Jianbing, Zhang Ruilin, Wang Jingyuan, Liu Baoyou. TIME-DEPENDENT MECHANICAL BEHAVIOR AND CONSTITUTIVE PARAMETER IDENTIFICATION OF CHONDROCYTES BASED ON MACHINE LEARNING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3215-3222. DOI: 10.6052/0459-1879-22-344
    [3]Li Yang, Sang Jianbing, Ao Rihan, Ma Yu, Wei Xinyu. RESEARCH ON INVERSION METHOD OF HYPERELASTIC CONSTITUTIVE PARAMETERS OF SKELETAL MUSCLES BASED ON SIMULATION AND INTELLIGENT ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1449-1456. DOI: 10.6052/0459-1879-21-038
    [4]Fei Qingguo, Jiang Dong, Chen Sufang, Qin Furong. THERMAL-RELATED PARAMETER IDENTIFICATION OF BRAIDED COMPOSITES AT HIGH TEMPERATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 497-507. DOI: 10.6052/0459-1879-18-078
    [5]Niu Wendong, Wang Yanhui, Yang Yanpeng, Zhu Yaqiang, Wang Shuxin. HYDRODYNAMIC PARAMETER IDENTIFICATION OF HYBRID-DRIVEN UNDERWATER GLIDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 813-822. DOI: 10.6052/0459-1879-16-162
    [6]Qu Jie, Qin Wei, Jin Quanlin. STUDY ON THE PARAMETER VALUE DOMAIN OF MACRO-MICRO CONSTITUTIVE MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 920-930. DOI: 10.6052/0459-1879-14-049
    [7]Xie Yong, Liu Pan, Cai Guoping. PARAMETER IDENTIFICATION OF FLEXIBLE PLATE BASED ON THE ACCELERATION OUTPUT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 128-135. DOI: 10.6052/0459-1879-13-124
    [8]Su Luanming, Ye Min. PARAMETRIC INDENTIFICATION FOR HIGH-DIMENSIONAL NONLINEAR VIBRATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 425-436. DOI: 10.6052/0459-1879-2012-2-20120227
    [9]Ma Xiqin Yang Changqi Tang Liang. Identification of intraocular lens constitutive parameters using mixed numerical-experimental method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 179-183. DOI: 10.6052/0459-1879-2011-1-lxxb2010-028
    [10]AN INVESTIGATION INTO THE FIELD IDENTIFICATION TECHNIQUE OF MODAL PARAMETERS OF ROTATING SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(5): 634-640. DOI: 10.6052/0459-1879-1991-5-1995-886

Catalog

    Article Metrics

    Article views (87) PDF downloads (19) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return