Citation: | He Shengmao, Gao Yang, Zhang Hao, Wang Yangxin. Model and analytic method of spacecraft v∞ transfer orbit. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2987-3001. DOI: 10.6052/0459-1879-24-199 |
[1] |
Labunsky A, Papkov O, Sukhanov K. Multiple Gravity Assist Interplanetary Trajectories. Earth Space Institute Book Series, Gordon and Breach, London, 1998
|
[2] |
Russell RP, Ocampo CA, Geometric analysis of free-return trajectories following a gravity-assisted flyby. Journal of Spacecraft and Rockets, 2005, 42(1): 694-698
|
[3] |
Robin B. Lunar and Interplanetary Trajectories. UK: Springer Praxis Books, 2016
|
[4] |
Petropoulos AE, Longuski JM, Bonfiglio E. Trajectories to jupiter via gravity assists from venus, earth, and mars. Journal of Spacecraft and Rockets, 2000, 37(6): 776-783 doi: 10.2514/2.3650
|
[5] |
Lynam AE, Longuski JM. Interplanetary trajectories for multiple satellite-aided capture at jupiter. Journal of Guidance Control and Dynamics, 2010, 34(5): 1485-1494
|
[6] |
谭高威, 高扬, 杨新. 深空探测器多次引力辅助转移轨道全局搜索. 航天器工程, 2012, 21(2): 18-27 (Tan Gaowei, Gao Yang, Yang Xin. Global search of multiple gravity assist transfer trajectories for deep space probes. Spacecraft Engineering, 2012, 21(2): 18-27 (in Chinese) doi: 10.3969/j.issn.1673-8748.2012.02.007
Tan Gaowei, Gao Yang, Yang Xin. Global search of multiple gravity assist transfer trajectories for deep space probes. Spacecraft Engineering, 2012, 21(2): 18-27 (in Chinese) doi: 10.3969/j.issn.1673-8748.2012.02.007
|
[7] |
Wagner S, Wie B. Hybrid algorithm for multiple gravity-assist and impulsive delta-V maneuvers. Journal of Guidance, Control, and Dynamics, 2015, 38(1): 2096-2107
|
[8] |
曹知远, 李翔宇, 乔栋. 面向太阳系边际探测的多天体借力目标选择方法. 深空探测学报, 2020, 7(6): 536-544 (Cao Zhiyuan, Li Xiangyu, Qiao Dong. Target selection of multiple gravity-assist trajectories for solar boundary exploration. Journal of Deep Space Exploration, 2020, 7(6): 536-544 (in Chinese)
Cao Zhiyuan, Li Xiangyu, Qiao Dong. Target selection of multiple gravity-assist trajectories for solar boundary exploration. Journal of Deep Space Exploration, 2020, 7(6): 536-544 (in Chinese)
|
[9] |
Russell RP, Strange NJ. Planetary moon cycler trajectories. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 143-157
|
[10] |
Strange NJ. Analytical methods for gravity-assist tour design. [Master Thesis]. Indiana: Purdue University, 2016
|
[11] |
Russell RP, Ocampo CA. Global search for idealized free return earth-mars cyclers. Journal of Guidance, Control, and Dynamics, 2005, 28(2): 194-208 doi: 10.2514/1.8696
|
[12] |
Jesick M. Mars double-flyby free returns. Journal of Spacecraft & Rockets, 2015, 52(5): 1-13
|
[13] |
李彬, 郑伟, 张洪波. 脉冲推力轨道拦截可达性描述及求解方法. 飞控与探测, 2019, 2(4): 26-36 (Li Bin, Zheng Wei, Zhang Hongbo. Description and solution of orbit interception accessibility with impulse thrust. Flight Control & Detection, 2019, 2(4): 26-36 (in Chinese)
Li Bin, Zheng Wei, Zhang Hongbo. Description and solution of orbit interception accessibility with impulse thrust. Flight Control & Detection, 2019, 2(4): 26-36 (in Chinese)
|
[14] |
武健, 刘新学, 舒健生. 单脉冲作用下在轨拦截器覆盖范围研究. 飞行力学, 2014, 32(1): 65-69 (Wu Jian, Liu Xinxue, Shu Jiansheng. Research on the coverage of on-orbit interceptor under single impulse. Flight Mechanics, 2014, 32(1): 65-69 (in Chinese) doi: 10.3969/j.issn.1002-0853.2014.01.015
Wu Jian, Liu Xinxue, Shu Jiansheng. Research on the coverage of on-orbit interceptor under single impulse. Flight Mechanics, 2014, 32(1): 65-69 (in Chinese) doi: 10.3969/j.issn.1002-0853.2014.01.015
|
[15] |
谭守林, 王大彤, 吕连朋等. 基于最短拦截时间的异面拦截机动轨道设计与优化. 指挥控制与仿真, 2013, 35(5): 88-90, 94 (Tan Shoulin, Wang Datong, Lyu Lianpeng, et al. Designing and optimizing of interception transfer path based on different the shortest interception time. Command Control & Simulation, 2013, 35(5): 88-90, 94 (in Chinese) doi: 10.3969/j.issn.1673-3819.2013.05.020
Tan Shoulin, Wang Datong, Lyu Lianpeng, et al. Designing and optimizing of interception transfer path based on different the shortest interception time. Command Control & Simulation, 2013, 35(5): 88-90, 94 (in Chinese) doi: 10.3969/j.issn.1673-3819.2013.05.020
|
[16] |
孟少飞, 刘新学, 傅丹等. 单脉冲最省能量拦截轨道迭代算法. 系统工程与电子技术, 2016, 38(12): 2821-2826 (Meng Shaofei, Liu Xinxue, Fu Dan, et al. Iterative algorithm for single impulse interception trajectory with the lowest energy consumption. Systems Engineering and Electronics, 2016, 38(12): 2821-2826 (in Chinese)
Meng Shaofei, Liu Xinxue, Fu Dan, et al. Iterative algorithm for single impulse interception trajectory with the lowest energy consumption. Systems Engineering and Electronics, 2016, 38(12): 2821-2826 (in Chinese)
|
[17] |
Wu CY, Russell RP. Reachable set of low-delta-v trajectories following a gravity-assist flyby. Journal of Spacecraft and Rockets, 2023, 60(2): 1-18
|
[18] |
Chen Q, Qiao D, Wen C. Orbital element reachable set after gravity assists of planets in elliptical orbits. Journal of Guidance, Control, and Dynamics, 2020, 43(5): 989-997
|
[19] |
Chen Q, Qiao D, Shang H, et al. A new method for solving reachable domain of spacecraft with a single impulse. Acta Astronautica, 2018, 145: 153-164
|
[20] |
Wen C, Zhao Y, Shi P. Precise determination of reachable domain for spacecraft with single impulse. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1767-1779 doi: 10.2514/1.G000583
|
[21] |
张赛, 杨震, 罗亚中. 地固系下航天器单脉冲轨道机动可达域求解算法. 力学与实践, 2022, 44(6): 1286-1296 (Zhang Sai, Yang Zhen, Luo Yazhong. An algorithm for solving spacecraft reachable domain with single-impulse maneuvering in ECEF coordinate system. Mechanics in Engineering, 2022, 44(6): 1286-1296 (in Chinese)
Zhang Sai, Yang Zhen, Luo Yazhong. An algorithm for solving spacecraft reachable domain with single-impulse maneuvering in ECEF coordinate system. Mechanics in Engineering, 2022, 44(6): 1286-1296 (in Chinese)
|
[22] |
Strange NJ, Longuski JM. Graphical method for gravity-assist trajectory design. Journal of Spacecraft and Rockets, 2002, 39(1): 9-16
|
[23] |
Battin RH. An Introduction to the Mathematics and Methods of Astrodynamics. Revised Edition. Reston: American Institute of Aeronautics and Astronautics, 1999
|
[24] |
Gooding RH. A procedure for the solution of Lambert's orbital boundary-value problem. Celestial Mechanics & Dynamical Astronomy, 1990, 48(2): 145-165
|
[25] |
Izzo D. Revisiting Lambert’s problem. Celestial Mechanics & Dynamical Astronomy, 2014, 121(1): 1-15
|
[26] |
Gauss CF. Theory of the motion of the heavenly bodies moving about the sun in conic sections, a translation of Gauss’s theoria motus. Little Brown and Company, Boston; Translator: Davis, Charles Henry, 1857. https://www.biodiversitylibrary.org/item/58729
|
[27] |
Avanzini G. A simple Lambert algorithm. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1587-1594 doi: 10.2514/1.36426
|
[28] |
Lantukh D. Preliminary design of spacecraft trajectories for missions to outer planets and small bodies. [PhD Thesis]. Austin: University of Texas, 2015
|
[29] |
Strange NJ, Russell R, Buffington B. Mapping the V-infinity globe//AIAA/AAS Space Flight Mechanics Meeting, 2007, AAS Paper 07-277
|
[30] |
Pisarevsky DM, Kogan A, Guelman M. Interplanetary periodic trajectories in two-planet systems. Journal of Guidance Control & Dynamics, 2015, 31(3): 729-739
|
[31] |
Amir F, Nastaran S. A classic new method to solve quartic equations. Applied and Computational Mathematics, 2013, 2(2): 24-27
|
[32] |
Zhou, XJ, Chu, SD, Formula of sphere triangle and its application. Journal of Zhejiang International Maritime College, 2008, 4(59): 59-63
|
[1] | Wang Changtao, Dai Honghua, Zhang Zhe, Wang Xuechuan, Yue Xiaokui. PARALLEL ACCELERATED LOCAL VARIATIONAL ITERATION METHOD AND ITS APPLICATION IN ORBIT COMPUTATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 991-1003. DOI: 10.6052/0459-1879-22-592 |
[2] | Li Xiangyu, Qiao Dong, Cheng Yu. PROGRESS OF THREE-BODY ORBITAL DYNAMICS STUDY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1223-1245. DOI: 10.6052/0459-1879-20-367 |
[3] | Li Xinran, Zhao Haibin. STUDY ON EVOLUTIONARY ALGORITHMS FOR INITIAL ORBIT DETERMINATION OF NEAR-EARTH ASTEROIDS WITH TOO-SHORT-ARC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 902-911. DOI: 10.6052/0459-1879-20-084 |
[4] | Si Zhen, Qian Yingjing, Yang Xiaodong, Zhang Wei. HOVERING ORBITS DESIGN FOR PERTURBED ASTEROIDS WITH PARAMETRIC EXCITATION RESONANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1774-1788. DOI: 10.6052/0459-1879-20-141 |
[5] | Yang Mengjie, Yuan Jianping. AN IMPROVED MODEL OF ORBITAL DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 154-162. DOI: 10.6052/0459-1879-14-298 |
[6] | Cao Jing, Yuan Jianping, Luo Jianjun. GYROSCOPIC PRECESSION AND FORCED PRECESSION ORBIT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 406-411. DOI: 10.6052/0459-1879-12-375 |
[7] | Optimal control for elliptic orbital rendezvous based on line-of-sight dynamic model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1237-1243. DOI: 10.6052/0459-1879-2010-6-lxxb2009-751 |
[8] | Hao Wen, Dongping Jin, Haiyan Hu. Retrieval control of an electro-dynamic tethered satellite in an inclined orbit[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3): 375-380. DOI: 10.6052/0459-1879-2008-3-2007-407 |
[9] | Shengping Gong, Junfeng Li, Yunfeng Gao, Hexi Baoyin. Relative motion around displaced solar orbit[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 522-527. DOI: 10.6052/0459-1879-2007-4-2006-254 |
[10] | HOMOCLINIC ORBITS OF THE TRUNCATED SYSTEMS OF SINE-GORDON EQUATION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(3): 292-299. DOI: 10.6052/0459-1879-1998-3-1995-129 |
1. |
杨龙,李龙龙. 基于工程限值约束的结构拓扑优化设计分析. 中国建筑金属结构. 2024(02): 39-41 .
![]() | |
2. |
于淼,赵文武,单兴业,毕道明. 一种基于应力控制的金属薄壳结构变形修复方法研究. 测控技术. 2024(04): 89-94 .
![]() |