Citation: | Li Xiaojun, Zhang Xun, Xing Haojie. A transmitting boundary with time-varying computational artificial wave velocities. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2924-2935. DOI: 10.6052/0459-1879-24-178 |
[1] |
廖振鹏. 工程波动理论导论. 第二版. 北京: 科学出版社, 2002 (Liao Zhenpeng. Introduction to Wave Motion Theories for Engineering. Second Edition. Beijing: Science Press, 2002 (in Chinese)
Liao Zhenpeng. Introduction to Wave Motion Theories for Engineering. Second Edition. Beijing: Science Press, 2002 (in Chinese)
|
[2] |
邢浩洁, 李小军, 刘爱文等. 波动数值模拟中的外推型人工边界条件. 力学学报, 2021, 53(5): 1480-1495 (Xing Haojie, Li Xiaojun, Liu Aiwen, et al. Extrapolation-type artificial boundary conditions in the numerical simulation of wave motion. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1480-1495 (in Chinese) doi: 10.6052/0459-1879-20-408
Xing Haojie, Li Xiaojun, Liu Aiwen, et al. Extrapolation-type artificial boundary conditions in the numerical simulation of wave motion. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1480-1495 (in Chinese) doi: 10.6052/0459-1879-20-408
|
[3] |
Xing HJ, Li XJ, Li HJ, et al. The theory and new unified formulas of displacement-type local absorbing boundary conditions. Bulletin of the Seismological Society of America, 2021, 111(2): 801-824 doi: 10.1785/0120200155
|
[4] |
Xing HJ, Li XJ, Li HJ, et al. Spectral-element formulation of multi-transmitting formula and its accuracy and stability in 1D and 2D seismic wave modeling. Soil Dynamics and Earthquake Engineering, 2021, 140: 106218
|
[5] |
杜修力, 赵密, 王进廷. 近场波动模拟的人工应力边界条件. 力学学报, 2006, 38(1): 49-56 (Du Xiuli, Zhao Mi, Wang Jinting. A stress artificial boundary in FEA for near-field wave problem. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 49-56 (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.01.007
Du Xiuli, Zhao Mi, Wang Jinting. A stress artificial boundary in FEA for near-field wave problem. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 49-56 (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.01.007
|
[6] |
李会芳, 赵密, 杜修力. 竖向成层介质中标量波传播问题的高精度人工边界条件. 工程力学, 2022, 39(5): 55-64 (Li Huifang, Zhao Mi, Du Xiuli. High-precision artificial boundary condition for scalar wave propagation in vertical stratified media. Engineering Mechanics, 2022, 39(5): 55-64 (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0112
Li Huifang, Zhao Mi, Du Xiuli. High-precision artificial boundary condition for scalar wave propagation in vertical stratified media. Engineering Mechanics, 2022, 39(5): 55-64 (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0112
|
[7] |
吴利华, 赵密, 杜修力. 多层波导中矢量波动的时域人工边界条件. 力学学报, 2021, 53(2): 554-567 (Wu Lihua, Zhao Mi, Du Xiuli. A time-domain artificial boundary condition for vector wave in multilayered waveguide. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 554-567 (in Chinese) doi: 10.6052/0459-1879-20-213
Wu Lihua, Zhao Mi, Du Xiuli. A time-domain artificial boundary condition for vector wave in multilayered waveguide. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 554-567 (in Chinese) doi: 10.6052/0459-1879-20-213
|
[8] |
Zhao M, Wu LH, Du XL, et al. Stable high-order absorbing boundary condition based on new continued fraction for scalar wave propagation in unbounded multilayer media. Computer Methods in Applied Mechanics and Engineering, 2018, 334: 111-137 doi: 10.1016/j.cma.2018.01.018
|
[9] |
刘晶波, 李彬. 三维黏弹性静-动力统一人工边界. 中国科学E辑, 2005, 35(9): 966-980 (Liu Jingbo, Li Bin. Three-dimensional viscous-elastic static-dynamic unified artificial boundaries. Science China Series E, 2005, 35(9): 966-980 (in Chinese)
Liu Jingbo, Li Bin. Three-dimensional viscous-elastic static-dynamic unified artificial boundaries. Science China Series E, 2005, 35(9): 966-980 (in Chinese)
|
[10] |
刘晶波, 宝鑫, 谭辉等. 波动问题中流体介质的动力人工边界. 力学学报, 2017, 49(6): 1418-1427 (Liu Jingbo, Bao Xin, Tan Hui, et al. Dynamical artificial boundary for fluid medium in wave motion problems. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1418-1427 (in Chinese) doi: 10.6052/0459-1879-17-199
Liu Jingbo, Bao Xin, Tan Hui, et al. Dynamical artificial boundary for fluid medium in wave motion problems. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1418-1427 (in Chinese) doi: 10.6052/0459-1879-17-199
|
[11] |
刘晶波, 宝鑫, 李述涛等. 采用黏弹性人工边界时显式算法稳定性的改善研究. 工程力学, 2023, 40(5): 20-31 (Liu Jingbo, Bao Xin, Li Shutao, et al. Stability improvement of explicit algorithm when using viscoelastic artificial boundary. Engineering Mechanics, 2023, 40(5): 20-31 (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.10.0836
Liu Jingbo, Bao Xin, Li Shutao, et al. Stability improvement of explicit algorithm when using viscoelastic artificial boundary. Engineering Mechanics, 2023, 40(5): 20-31 (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.10.0836
|
[12] |
李述涛, 刘晶波, 宝鑫. 采用黏弹性人工边界单元时显式算法稳定性的改善研究. 力学学报, 2020, 52(6): 1838-1849 (Li Shutao, Liu Jingbo, Bao Xin. Improvement of explicit algorithms stability with visco-elastic artificial boundary elements. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1838-1849 (in Chinese) doi: 10.6052/0459-1879-20-224
Li Shutao, Liu Jingbo, Bao Xin. Improvement of explicit algorithms stability with visco-elastic artificial boundary elements. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1838-1849 (in Chinese) doi: 10.6052/0459-1879-20-224
|
[13] |
Bao X, Liu JB, Li ST, et al. A new viscoelastic artificial boundary with improved numerical stability in explicit calculation of wave propagation problems in infinite domains. Computers and Geotechnics, 2022, 145: 104698 doi: 10.1016/j.compgeo.2022.104698
|
[14] |
Xie ZN, Zheng YL, Cristini P, et al. Multi-axial unsplit frequency-shifted perfectly matched layer for displacement-based anisotropic wave simulation in infinite domain. Earthquake Engineering and Engineering Vibration, 2023, 22(2): 407-421 doi: 10.1007/s11803-023-2170-3
|
[15] |
Zhang GL, Zhao M, Zhang JQ, et al. Scaled boundary perfectly matched layer (SBPML): A novel 3D time-domain artificial boundary method for wave problem in general-shaped and heterogeneous infinite domain. Computer Methods in Applied Mechanics and Engineering, 2023, 403: 115738 doi: 10.1016/j.cma.2022.115738
|
[16] |
廖振鹏, 黄孔亮, 杨柏坡等. 暂态波透射边界. 中国科学A辑, 1984, 6: 556-564 (Liao Zhenpeng, Huang Hongliang, Yang Baipo, et al. A transmitting boundary for transient waves. Science China Series A, 1984, 6: 556-564 (in Chinese)
Liao Zhenpeng, Huang Hongliang, Yang Baipo, et al. A transmitting boundary for transient waves. Science China Series A, 1984, 6: 556-564 (in Chinese)
|
[17] |
Liao ZP, Wong HL. A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dynamics and Earthquake Engineering, 1984, 3(4): 174-183 doi: 10.1016/0261-7277(84)90033-0
|
[18] |
于彦彦, 芮志良, 丁海平. 三维局部场地地震波散射问题谱元并行模拟方法. 力学学报, 2023, 55(6): 1342-1354 (Yu Yanyan, Rui Zhiliang, Ding Haiping. Parallel spectral element method for 3D local-site ground motion simulations of wave scattering problem. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1342-1354 (in Chinese) doi: 10.6052/0459-1879-23-052
Yu Yanyan, Rui Zhiliang, Ding Haiping. Parallel spectral element method for 3D local-site ground motion simulations of wave scattering problem. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1342-1354 (in Chinese) doi: 10.6052/0459-1879-23-052
|
[19] |
孔曦骏, 邢浩洁, 李鸿晶. 流固耦合地震波动问题的显式谱元模拟方法. 力学学报, 2022, 54(9): 2513-2528 (Kong Xijun, Xing Haojie, Li Hongjing. An explicit spectral-element approach to fluid-solid coupling problems in seismic wave propagation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2513-2528 (in Chinese) doi: 10.6052/0459-1879-22-068
Kong Xijun, Xing Haojie, Li Hongjing. An explicit spectral-element approach to fluid-solid coupling problems in seismic wave propagation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2513-2528 (in Chinese) doi: 10.6052/0459-1879-22-068
|
[20] |
陈少林, 伍锐, 张娇等. 地形和土-结相互作用效应对三维跨峡谷桥梁地震响应的影响分析. 力学学报, 2021, 53(6): 1781-1794 (Chen Shaolin, Wu Rui, Zhang Jiao, et al. Topography and soil-structure interaction effects on the seismic response of three-dimensional canyon-crossing bridge. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1781-1794 (in Chinese) doi: 10.6052/0459-1879-21-039
Chen Shaolin, Wu Rui, Zhang Jiao, et al. Topography and soil-structure interaction effects on the seismic response of three-dimensional canyon-crossing bridge. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1781-1794 (in Chinese) doi: 10.6052/0459-1879-21-039
|
[21] |
陈少林, 柯小飞, 张洪翔. 海洋地震工程流固耦合问题统一计算框架. 力学学报, 2019, 51(2): 594-606 (Chen Shaolin, Ke Xiaofei, Zhang Hongxiang. A unified computational framework for fluid-solid coupling in marine earthquake engineering. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 594-606 (in Chinese) doi: 10.6052/0459-1879-18-333
Chen Shaolin, Ke Xiaofei, Zhang Hongxiang. A unified computational framework for fluid-solid coupling in marine earthquake engineering. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 594-606 (in Chinese) doi: 10.6052/0459-1879-18-333
|
[22] |
Chen SL, Lyu H, Zhou GL. Partitioned analysis of soil-structure interaction for nuclear island buildings. Earthquake Engineering and Structural Dynamics, 2022, 51: 2220-2247 doi: 10.1002/eqe.3661
|
[23] |
Yu YY, Ding HP, Zhang XB. Simulations of ground motions under plane wave incidence in 2D complex site based on the spectral element method (SEM) and multi-transmitting formula (MTF): SH problem. Journal of Seismology, 2021, 25(3): 967-985 doi: 10.1007/s10950-021-09995-y
|
[24] |
Huang JJ. An incrementation-adaptive multi-transmitting boundary for seismic fracture analysis of concrete gravity dams. Soil Dynamics and Earthquake Engineering, 2018, 110: 145-158 doi: 10.1016/j.soildyn.2017.12.002
|
[25] |
Shi L, Wang P, Cai YQ, et al. Multi-transmitting formula for finite element modeling of wave propagation in saturated poroelastic medium. Soil Dynamics and Earthquake Engineering, 2016, 80: 11-24 doi: 10.1016/j.soildyn.2015.09.021
|
[26] |
Liao ZP, Liu JB. Numerical instabilities of a local transmitting boundary. Earthquake Engineering and Structural Dynamics, 1992, 21(1): 65-77 doi: 10.1002/eqe.4290210105
|
[27] |
李小军, 廖振鹏. 时域局部透射边界的计算飘移失稳. 力学学报, 1996, 28(5): 627-632 (Li Xiaojun, Liao Zhenpeng. The drift instability of local transmitting boundary in time domain. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 627-632 (in Chinese) doi: 10.3321/j.issn:0459-1879.1996.05.016
Li Xiaojun, Liao Zhenpeng. The drift instability of local transmitting boundary in time domain. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 627-632 (in Chinese) doi: 10.3321/j.issn:0459-1879.1996.05.016
|
[28] |
廖振鹏, 周正华, 张艳红. 波动数值模拟中透射边界的稳定实现. 地球物理学报, 2002, 45(4): 554-568 (Liao Zhenpeng, Zhou Zhenghua, Zhang Yanhong. Stable implementation of transmitting boundary in numerical simulation of wave motion. Chinese Journal of Geophysics, 2002, 45(4): 554-568 (in Chinese) doi: 10.3321/j.issn:0001-5733.2002.04.011
Liao Zhenpeng, Zhou Zhenghua, Zhang Yanhong. Stable implementation of transmitting boundary in numerical simulation of wave motion. Chinese Journal of Geophysics, 2002, 45(4): 554-568 (in Chinese) doi: 10.3321/j.issn:0001-5733.2002.04.011
|
[29] |
景立平, 廖振鹏, 邹经相. 多次透射公式的一种高频失稳机制. 地震工程与工程振动, 2002, 22(4): 7-13 (Jing Liping, Liao Zhenpeng, Zou Jingxiang. A highfrequency instability mechanism in numerical realization of multi-transmitting formula. Earthquake Engineering and Engineering Vibration, 2002, 22(4): 7-13 (in Chinese) doi: 10.3969/j.issn.1000-1301.2002.01.002
Jing Liping, Liao Zhenpeng, Zou Jingxiang. A highfrequency instability mechanism in numerical realization of multi-transmitting formula. Earthquake Engineering and Engineering Vibration, 2002, 22(4): 7-13 (in Chinese) doi: 10.3969/j.issn.1000-1301.2002.01.002
|
[30] |
李小军, 杨宇. 透射边界稳定性控制措施探讨. 岩土工程学报, 2012, 34(4): 641-645 (Li Xiaojun, Yang Yu. Measures for stability control of transmitting boundary. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 641-645 (in Chinese)
Li Xiaojun, Yang Yu. Measures for stability control of transmitting boundary. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 641-645 (in Chinese)
|
[31] |
谢志南, 廖振鹏. 透射边界高频失稳机理及其消除方法——SH波动. 力学学报, 2012, 44(4): 745-752 (Xie Zhinan, Liao Zhenpeng. Mechanism of high frequency instability caused by transmitting boundary and method of its elimination—SH wave. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 745-752 (in Chinese) doi: 10.6052/0459-1879-11-312
Xie Zhinan, Liao Zhenpeng. Mechanism of high frequency instability caused by transmitting boundary and method of its elimination—SH wave. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 745-752 (in Chinese) doi: 10.6052/0459-1879-11-312
|
[32] |
章旭斌, 廖振鹏, 谢志南. 透射边界高频失稳机理及稳定实现—P-SV波动. 地球物理学报, 2021, 64(10): 3646-3656 (Zhang Xubin, Liao Zhenpeng, Xie Zhinan. Mechanism of high frequency instability and stable implementation for transmitting boundary—P-SV wave motion. Chinese Journal of Geophysics, 2021, 64(10): 3646-3656 (in Chinese) doi: 10.6038/cjg2021O0420
Zhang Xubin, Liao Zhenpeng, Xie Zhinan. Mechanism of high frequency instability and stable implementation for transmitting boundary—P-SV wave motion. Chinese Journal of Geophysics, 2021, 64(10): 3646-3656 (in Chinese) doi: 10.6038/cjg2021O0420
|
[33] |
孔曦骏, 邢浩洁, 李鸿晶等. 多次透射公式飘移问题的控制方法. 力学学报, 2021, 53(11): 3097-3109 (Kong Xijun, Xing Haojie, Li Hongjing. An approach to controlling drift instability of multi-transmitting formula. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3097-3109 (in Chinese) doi: 10.6052/0459-1879-21-435
Kong Xijun, Xing Haojie, Li Hongjing. An approach to controlling drift instability of multi-transmitting formula. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3097-3109 (in Chinese) doi: 10.6052/0459-1879-21-435
|
[34] |
戴志军, 李小军, 侯春林. 谱元法与透射边界的配合使用及其稳定性研究. 工程力学, 2015, 32(11): 40-50 (Dai Zhijun, Li Xiaojun, Hou Chunlin. A combination usage of transmitting formula and spectral element method and the study of its stability. Engineering Mechanics, 2015, 32(11): 40-50 (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.03.0196
Dai Zhijun, Li Xiaojun, Hou Chunlin. A combination usage of transmitting formula and spectral element method and the study of its stability. Engineering Mechanics, 2015, 32(11): 40-50 (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.03.0196
|
[35] |
章旭斌, 谢志南. 波动谱元模拟中透射边界稳定性分析. 工程力学, 2022, 39(10): 26-35 (Zhang Xubin, Xie Zhinan. Stability analysis of transmitting boundary in wave spectral element simulation. Engineering Mechanics, 2022, 39(10): 26-35 (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.0428
Zhang Xubin, Xie Zhinan. Stability analysis of transmitting boundary in wave spectral element simulation. Engineering Mechanics, 2022, 39(10): 26-35 (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.0428
|
[36] |
邢浩洁, 刘爱文, 李小军等. 多人工波速优化透射边界在谱元法地震波动模拟中的应用. 地震学报, 2022, 44(1): 26-39 (Xing Haojie, Liu Aiwen, Li Xiaojun, et al. Application of an optimized transmitting boundary with multiple artificial wave velocities in spectral-element simulation of seismic wave propagation. Acta Seismologica Sinica, 2022, 44(1): 26-39 (in Chinese) doi: 10.11939/jass.20210090
Xing Haojie, Liu Aiwen, Li Xiaojun, et al. Application of an optimized transmitting boundary with multiple artificial wave velocities in spectral-element simulation of seismic wave propagation. Acta Seismologica Sinica, 2022, 44(1): 26-39 (in Chinese) doi: 10.11939/jass.20210090
|
[37] |
邢浩洁, 李小军, 刘爱文等. 弹性波模拟中局部透射边界的反射特征及参数优化. 振动与冲击, 2022, 41(12): 301-312 (Xing Haojie, Li Xiaojun, Liu Aiwen, et al. Reflection characteristics and parameter optimization of a local transmitting boundary for the modeling of elastic waves. Journal of Vibration and Shock, 2022, 41(12): 301-312 (in Chinese)
Xing Haojie, Li Xiaojun, Liu Aiwen, et al. Reflection characteristics and parameter optimization of a local transmitting boundary for the modeling of elastic waves. Journal of Vibration and Shock, 2022, 41(12): 301-312 (in Chinese)
|
[38] |
Givoli D, Neta B. High-order non-reflecting boundary scheme for time-dependent waves. Journal of Computational Physics, 2003, 186: 24-46 doi: 10.1016/S0021-9991(03)00005-6
|