Citation: | Wang Biao, Wang Shuyu, Xiong Yukai, Zhao Jianfeng, Kang Guozheng, Zhang Xu. Crystal plastic finite element simulation of tensile fracture behavior of gradient-grained materials. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2271-2281. DOI: 10.6052/0459-1879-24-149 |
[1] |
Li X, Lu L, Li J, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nature Reviews Materials, 2020, 5(9): 706-723 doi: 10.1038/s41578-020-0212-2
|
[2] |
Ji W, Zhou R, Vivegananthan P, et al. Recent progress in gradient-structured metals and alloys. Progress in Materials Science, 2023, 140: 101194 doi: 10.1016/j.pmatsci.2023.101194
|
[3] |
卢柯. 梯度纳米结构材料. 金属学报, 2015, 51(1): 1-10 (Lu Ke. Gradient nanostructured materials. Acta Metallurgica Sinica, 2015, 51(1): 1-10 (in Chinese) doi: 10.11900/0412.1961.2014.00395
Lu Ke. Gradient nanostructured materials. Acta Metallurgica Sinica, 2015, 51(1): 1-10 (in Chinese) doi: 10.11900/0412.1961.2014.00395
|
[4] |
Cao P. The strongest size in gradient nanograined metals. Nano Lett, 2020, 20(2): 1440-1446 doi: 10.1021/acs.nanolett.9b05202
|
[5] |
Yang H, Lavernia EJ, Schoenung JM. Novel fabrication of bulk Al with gradient grain size distributions via powder metallurgy. Philosophical Magazine Letters, 2015, 95(3): 177-186 doi: 10.1080/09500839.2015.1028504
|
[6] |
Lin Y, Pan J, Zhou HF, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Materialia, 2018, 153: 279-289 doi: 10.1016/j.actamat.2018.04.065
|
[7] |
Zhang SP, Song ZM, Hu YB, et al. 18Ni300/Inconel 625 alloy gradient materials fabricated by directed energy deposition. Materials Today Communications, 2023, 37: 107185 doi: 10.1016/j.mtcomm.2023.107185
|
[8] |
Sun D, Song JW, Cai YC, et al. A novel gradient composite material CrMnFeCoNiB2C0.5 prepared by laser melting deposition. Materials Science & Engineering A, 2023, 862: 144426
|
[9] |
贺琼瑶, 吴桂林, 刘聪等. 表面纳米化技术制备梯度纳米结构金属材料的研究进展. 表面技术, 2021, 50(1): 267-276, 295 (He Qiongyao, Wu Guilin, Liu Cong, et al. Research progress on gradient nanostructured metals prepared by surface nano crystallization technique. Surface Technology, 2021, 50(1): 267-276, 295 (in Chinese)
He Qiongyao, Wu Guilin, Liu Cong, et al. Research progress on gradient nanostructured metals prepared by surface nano crystallization technique. Surface Technology, 2021, 50(1): 267-276, 295 (in Chinese)
|
[10] |
Jain VK, Yadav MK, Siddiquee AN, et al. Fabrication of surface composites on different aluminium alloys via friction stir process - A review report. Australian Journal of Mechanical Engineering, 2023, 21(5): 1489-1512 doi: 10.1080/14484846.2021.2022577
|
[11] |
Xu S, Shen K, Han M, et al. Surface nano-crystallisation and mechanical properties of TiTa composite materials after surface mechanical grinding treatment. Materials Characterization, 2023, 206: 113458 doi: 10.1016/j.matchar.2023.113458
|
[12] |
Zhao S, Kad B, Wehrenberg CE, et al. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization. Proceedings of the National Academy of Sciences, 2017, 114(37): 9791-9796 doi: 10.1073/pnas.1708853114
|
[13] |
Wang Z, Jia Y, Zhang Y, et al. Achieving high strength-plasticity of nanoscale lamellar grain extracted from gradient lamellar nickel. Chinese Journal of Mechanical Engineering, 2022, 35(1): 58 doi: 10.1186/s10033-022-00738-9
|
[14] |
Lei L, Zhao Q, Zhao Y, et al. Gradient nanostructure, phase transformation, amorphization and enhanced strength-plasticity synergy of pure titanium manufactured by ultrasonic surface rolling. Journal of Materials Processing Technology, 2022, 299: 117322 doi: 10.1016/j.jmatprotec.2021.117322
|
[15] |
Wei Y, Li Y, Zhu L, et al. Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nature communications, 2014, 5(1): 1-8
|
[16] |
韩杰才, 徐丽, 王保林等. 梯度功能材料的研究进展及展望. 固体火箭技术, 2004, 3: 207-215 (Han Jiecai, Xu Li, Wang Baolin, et al. Progress and prospects of functional gradient materials. Journal of Solid Rocket Technology, 2004, 3: 207-215 (in Chinese) doi: 10.3969/j.issn.1006-2793.2004.03.012
Han Jiecai, Xu Li, Wang Baolin, et al. Progress and prospects of functional gradient materials. Journal of Solid Rocket Technology, 2004, 3: 207-215 (in Chinese) doi: 10.3969/j.issn.1006-2793.2004.03.012
|
[17] |
Yang H, Zhang Z, Shu J, et al. Gradient nanostructure, enhanced surface integrity and fatigue resistance of Ti-6Al-7Nb alloy processed by surface mechanical attrition treatment. Journal of Materials Science & Technology, 2024, 188: 252-269
|
[18] |
Cao R, Yu Q, Pan J, et al. On the exceptional damage-tolerance of gradient metallic materials. Materials Today, 2020, 32: 94-107 doi: 10.1016/j.mattod.2019.09.023
|
[19] |
Wu B, Xu X, Zhang X, et al. A crystal plasticity model for multiaxial cyclic deformation of U75V rail steel. International Journal of Fatigue, 2024, 183: 108232 doi: 10.1016/j.ijfatigue.2024.108232
|
[20] |
Zan XD, Guo X, Weng GJ. Hydride-enhanced strain localization in zirconium alloy: A study by crystal plasticity finite element method. International Journal of Plasticity, 2024, 174: 103911 doi: 10.1016/j.ijplas.2024.103911
|
[21] |
Xu Y, Lu X, Yang X, et al. Temperature-dependent, multi-mechanism crystal plasticity reveals the deformation and failure behaviour of multi-principal element alloys. Journal of the Mechanics and Physics of Solids, 2024, 185: 105549 doi: 10.1016/j.jmps.2024.105549
|
[22] |
Roy AM, Ganesan S, Acar P, et al. Combining crystal plasticity and phase field model for predicting texture evolution and the influence of nuclei clustering on recrystallization path kinetics in Ti-alloys. Acta Materialia, 2024, 266: 119645 doi: 10.1016/j.actamat.2023.119645
|
[23] |
Zeng Z, Li X, Xu D, et al. Gradient plasticity in gradient nano-grained metals. Extreme Mechanics Letters, 2016, 8: 213-219 doi: 10.1016/j.eml.2015.12.005
|
[24] |
Wang Y, Yang GX, Wang WJ, et al. Optimal stress and deformation partition in gradient materials for better strength and tensile ductility: A numerical investigation. Scientific Reports, 2017, 7(1): 10954 doi: 10.1038/s41598-017-10941-7
|
[25] |
Lu X, Zhang X, Shi M, et al. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper. International Journal of Plasticity, 2019, 113: 52-73 doi: 10.1016/j.ijplas.2018.09.007
|
[26] |
Zhang X, Zhao J, Kang G, et al. Geometrically necessary dislocations and related kinematic hardening in gradient grained materials: A nonlocal crystal plasticity study. International Journal of Plasticity, 2023, 163: 103553 doi: 10.1016/j.ijplas.2023.103553
|
[27] |
Liu LY, Yang QS, Liu X, et al. Crystal cracking of grain-gradient aluminum by a combined CPFEM-CZM method. Engineering Fracture Mechanics, 2021, 242: 107507 doi: 10.1016/j.engfracmech.2020.107507
|
[28] |
Quey R, Dawson PR, Barbe F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics and Engineering, 2011, 200(17): 1729-1745
|
[29] |
Rice JR. Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity. Journal of the Mechanics and Physics of Solids, 1971, 19(6): 433-455 doi: 10.1016/0022-5096(71)90010-X
|
[30] |
Peirce D, Asaro RJ, Needleman A. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metallurgica, 1982, 30(6): 1087-1119 doi: 10.1016/0001-6160(82)90005-0
|
[31] |
Ovid’ko IA. Review on the fracture processes in nanocrystalline materials. Journal of Materials Science, 2007, 42(5): 1694-1708 doi: 10.1007/s10853-006-0968-9
|
[32] |
Cavaliere P. Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. International Journal of Fatigue, 2009, 31(10): 1476-1489 doi: 10.1016/j.ijfatigue.2009.05.004
|
[33] |
Gulizzi V, Rycroft CH, Benedetti I. Modelling intergranular and transgranular micro-cracking in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering, 2018, 329: 168-194 doi: 10.1016/j.cma.2017.10.005
|
[34] |
Zhang P, Karimpour M, Balint D, et al. A controlled poisson voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis. Computational Materials Science, 2012, 64: 84-89 doi: 10.1016/j.commatsci.2012.02.022
|
[35] |
Huang Y. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. [PhD Thesis]. America: Harvard University, 1991
|
[36] |
Hall EO. The deformation and ageing of mild steel: III discussion of results. Proceedings of the Physical Society. Section B, 1951, 64(9): 747-753 doi: 10.1088/0370-1301/64/9/303
|
[37] |
Petch NJ. The cleavage strength of polycrystals. Journal of the Iron and Steel Institute, 1953: 25-28
|
[38] |
Ovid’ko IA, Sheinerman AG. Grain size effect on crack blunting in nanocrystalline materials. Scripta Materialia, 2008, 60(8): 627-630
|
[39] |
Li H, Ebrahimi F. Ductile-to-brittle transition in nanocrystalline metals. Advanced Materials, 2005, 17(16): 1969-1972 doi: 10.1002/adma.200500436
|
[40] |
Li H, Ebrahimi F. Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals. Applied Physics Letters, 2004, 84(21): 4307-4309 doi: 10.1063/1.1756198
|
[41] |
Ebrahimi F, Liscano A, Kong D, et al. Fracture of bulk face centered cubic (FCC) metallic nanostructures. Reviews on Advanced Materials Science, 2006, 13: 33-40
|
1. |
Tianbao MA,Chentao WANG,Xiangzhao XU. Conservative high precision pseudo arc-length method for strong discontinuity of detonation wave. Applied Mathematics and Mechanics(English Edition). 2022(03): 417-436 .
![]() |
|
2. |
赵金庆,马天宝. 基于伪弧长移动网格算法的爆炸与冲击多介质问题数值模拟. 兵工学报. 2020(S2): 200-210 .
![]() | |
3. |
栗建桥,马天宝,宁建国. 爆炸对自然磁场干扰机理. 力学学报. 2018(05): 1206-1218 .
![]() |