EI、Scopus 收录
中文核心期刊
Wang Biao, Wang Shuyu, Xiong Yukai, Zhao Jianfeng, Kang Guozheng, Zhang Xu. Crystal plastic finite element simulation of tensile fracture behavior of gradient-grained materials. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2271-2281. DOI: 10.6052/0459-1879-24-149
Citation: Wang Biao, Wang Shuyu, Xiong Yukai, Zhao Jianfeng, Kang Guozheng, Zhang Xu. Crystal plastic finite element simulation of tensile fracture behavior of gradient-grained materials. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2271-2281. DOI: 10.6052/0459-1879-24-149

CRYSTAL PLASTIC FINITE ELEMENT SIMULATION OF TENSILE FRACTURE BEHAVIOR OF GRADIENT-GRAINED MATERIALS

  • Received Date: March 31, 2024
  • Accepted Date: June 16, 2024
  • Available Online: June 16, 2024
  • Published Date: June 17, 2024
  • Gradient-grain structure materials exhibit many excellent mechanical properties, such as high strength, high toughness and fatigue resistance, by constructing microstructures from nanocrystals and fine crystals to coarse crystals in the interior of the materials. Engineering materials will inevitably suffer fatigue and fracture during long-term service, which seriously threatens the service safety and service life of materials. It has been reported that the nanocrystalline materials have the characteristics of intergranular fracture, and the fracture resistance is related to the grain size, but the gradient-grain structure materials have a complex grain size distribution, and the fracture mechanism needs to be further revealed. Therefore, based on the crystal plastic finite element method, a cohesive element is implanted on the polycrystalline grain boundary of the finite element model. The single tensile properties of homogeneous-grain structure copper and gradient-grain structure copper are simulated respectively, and the effect of precast crack on crack propagation of gradient-grain structure materials is studied. The results show that the proposed crystal plastic constitutive model combined with the grain boundary damage mechanism can effectively simulate the plastic deformation and crack propagation of gradient-grain structure materials. The gradient-grain structure materials exhibit the gradient distribution of stress and plastic strain under uniaxial tensile deformation. On the one hand, due to the effect of grain size, the surface nanocrystalline strength is high although the flow stress in the fine-grained region of the matrix is relatively low. In addition, due to the difference in strain hardening capacity, although the nanocrystalline region shows a lower plastic strain, the fine-grained region shows a higher plastic deformation capacity. Therefore, the gradient-grain structure effectively optimizes the synergistic effect of strength and toughness through the difference of strength and strain hardening ability, thus enhancing the ability to resist crack propagation. The precast crack in the nanocrystalline region has a great influence on the strength of gradient-grain structure materials, so restraining the crack initiation in the nanocrystalline region is conducive to the safe service of grain structure materials.
  • [1]
    Li X, Lu L, Li J, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nature Reviews Materials, 2020, 5(9): 706-723 doi: 10.1038/s41578-020-0212-2
    [2]
    Ji W, Zhou R, Vivegananthan P, et al. Recent progress in gradient-structured metals and alloys. Progress in Materials Science, 2023, 140: 101194 doi: 10.1016/j.pmatsci.2023.101194
    [3]
    卢柯. 梯度纳米结构材料. 金属学报, 2015, 51(1): 1-10 (Lu Ke. Gradient nanostructured materials. Acta Metallurgica Sinica, 2015, 51(1): 1-10 (in Chinese) doi: 10.11900/0412.1961.2014.00395

    Lu Ke. Gradient nanostructured materials. Acta Metallurgica Sinica, 2015, 51(1): 1-10 (in Chinese) doi: 10.11900/0412.1961.2014.00395
    [4]
    Cao P. The strongest size in gradient nanograined metals. Nano Lett, 2020, 20(2): 1440-1446 doi: 10.1021/acs.nanolett.9b05202
    [5]
    Yang H, Lavernia EJ, Schoenung JM. Novel fabrication of bulk Al with gradient grain size distributions via powder metallurgy. Philosophical Magazine Letters, 2015, 95(3): 177-186 doi: 10.1080/09500839.2015.1028504
    [6]
    Lin Y, Pan J, Zhou HF, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Materialia, 2018, 153: 279-289 doi: 10.1016/j.actamat.2018.04.065
    [7]
    Zhang SP, Song ZM, Hu YB, et al. 18Ni300/Inconel 625 alloy gradient materials fabricated by directed energy deposition. Materials Today Communications, 2023, 37: 107185 doi: 10.1016/j.mtcomm.2023.107185
    [8]
    Sun D, Song JW, Cai YC, et al. A novel gradient composite material CrMnFeCoNiB2C0.5 prepared by laser melting deposition. Materials Science & Engineering A, 2023, 862: 144426
    [9]
    贺琼瑶, 吴桂林, 刘聪等. 表面纳米化技术制备梯度纳米结构金属材料的研究进展. 表面技术, 2021, 50(1): 267-276, 295 (He Qiongyao, Wu Guilin, Liu Cong, et al. Research progress on gradient nanostructured metals prepared by surface nano crystallization technique. Surface Technology, 2021, 50(1): 267-276, 295 (in Chinese)

    He Qiongyao, Wu Guilin, Liu Cong, et al. Research progress on gradient nanostructured metals prepared by surface nano crystallization technique. Surface Technology, 2021, 50(1): 267-276, 295 (in Chinese)
    [10]
    Jain VK, Yadav MK, Siddiquee AN, et al. Fabrication of surface composites on different aluminium alloys via friction stir process - A review report. Australian Journal of Mechanical Engineering, 2023, 21(5): 1489-1512 doi: 10.1080/14484846.2021.2022577
    [11]
    Xu S, Shen K, Han M, et al. Surface nano-crystallisation and mechanical properties of TiTa composite materials after surface mechanical grinding treatment. Materials Characterization, 2023, 206: 113458 doi: 10.1016/j.matchar.2023.113458
    [12]
    Zhao S, Kad B, Wehrenberg CE, et al. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization. Proceedings of the National Academy of Sciences, 2017, 114(37): 9791-9796 doi: 10.1073/pnas.1708853114
    [13]
    Wang Z, Jia Y, Zhang Y, et al. Achieving high strength-plasticity of nanoscale lamellar grain extracted from gradient lamellar nickel. Chinese Journal of Mechanical Engineering, 2022, 35(1): 58 doi: 10.1186/s10033-022-00738-9
    [14]
    Lei L, Zhao Q, Zhao Y, et al. Gradient nanostructure, phase transformation, amorphization and enhanced strength-plasticity synergy of pure titanium manufactured by ultrasonic surface rolling. Journal of Materials Processing Technology, 2022, 299: 117322 doi: 10.1016/j.jmatprotec.2021.117322
    [15]
    Wei Y, Li Y, Zhu L, et al. Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nature communications, 2014, 5(1): 1-8
    [16]
    韩杰才, 徐丽, 王保林等. 梯度功能材料的研究进展及展望. 固体火箭技术, 2004, 3: 207-215 (Han Jiecai, Xu Li, Wang Baolin, et al. Progress and prospects of functional gradient materials. Journal of Solid Rocket Technology, 2004, 3: 207-215 (in Chinese) doi: 10.3969/j.issn.1006-2793.2004.03.012

    Han Jiecai, Xu Li, Wang Baolin, et al. Progress and prospects of functional gradient materials. Journal of Solid Rocket Technology, 2004, 3: 207-215 (in Chinese) doi: 10.3969/j.issn.1006-2793.2004.03.012
    [17]
    Yang H, Zhang Z, Shu J, et al. Gradient nanostructure, enhanced surface integrity and fatigue resistance of Ti-6Al-7Nb alloy processed by surface mechanical attrition treatment. Journal of Materials Science & Technology, 2024, 188: 252-269
    [18]
    Cao R, Yu Q, Pan J, et al. On the exceptional damage-tolerance of gradient metallic materials. Materials Today, 2020, 32: 94-107 doi: 10.1016/j.mattod.2019.09.023
    [19]
    Wu B, Xu X, Zhang X, et al. A crystal plasticity model for multiaxial cyclic deformation of U75V rail steel. International Journal of Fatigue, 2024, 183: 108232 doi: 10.1016/j.ijfatigue.2024.108232
    [20]
    Zan XD, Guo X, Weng GJ. Hydride-enhanced strain localization in zirconium alloy: A study by crystal plasticity finite element method. International Journal of Plasticity, 2024, 174: 103911 doi: 10.1016/j.ijplas.2024.103911
    [21]
    Xu Y, Lu X, Yang X, et al. Temperature-dependent, multi-mechanism crystal plasticity reveals the deformation and failure behaviour of multi-principal element alloys. Journal of the Mechanics and Physics of Solids, 2024, 185: 105549 doi: 10.1016/j.jmps.2024.105549
    [22]
    Roy AM, Ganesan S, Acar P, et al. Combining crystal plasticity and phase field model for predicting texture evolution and the influence of nuclei clustering on recrystallization path kinetics in Ti-alloys. Acta Materialia, 2024, 266: 119645 doi: 10.1016/j.actamat.2023.119645
    [23]
    Zeng Z, Li X, Xu D, et al. Gradient plasticity in gradient nano-grained metals. Extreme Mechanics Letters, 2016, 8: 213-219 doi: 10.1016/j.eml.2015.12.005
    [24]
    Wang Y, Yang GX, Wang WJ, et al. Optimal stress and deformation partition in gradient materials for better strength and tensile ductility: A numerical investigation. Scientific Reports, 2017, 7(1): 10954 doi: 10.1038/s41598-017-10941-7
    [25]
    Lu X, Zhang X, Shi M, et al. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper. International Journal of Plasticity, 2019, 113: 52-73 doi: 10.1016/j.ijplas.2018.09.007
    [26]
    Zhang X, Zhao J, Kang G, et al. Geometrically necessary dislocations and related kinematic hardening in gradient grained materials: A nonlocal crystal plasticity study. International Journal of Plasticity, 2023, 163: 103553 doi: 10.1016/j.ijplas.2023.103553
    [27]
    Liu LY, Yang QS, Liu X, et al. Crystal cracking of grain-gradient aluminum by a combined CPFEM-CZM method. Engineering Fracture Mechanics, 2021, 242: 107507 doi: 10.1016/j.engfracmech.2020.107507
    [28]
    Quey R, Dawson PR, Barbe F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics and Engineering, 2011, 200(17): 1729-1745
    [29]
    Rice JR. Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity. Journal of the Mechanics and Physics of Solids, 1971, 19(6): 433-455 doi: 10.1016/0022-5096(71)90010-X
    [30]
    Peirce D, Asaro RJ, Needleman A. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metallurgica, 1982, 30(6): 1087-1119 doi: 10.1016/0001-6160(82)90005-0
    [31]
    Ovid’ko IA. Review on the fracture processes in nanocrystalline materials. Journal of Materials Science, 2007, 42(5): 1694-1708 doi: 10.1007/s10853-006-0968-9
    [32]
    Cavaliere P. Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. International Journal of Fatigue, 2009, 31(10): 1476-1489 doi: 10.1016/j.ijfatigue.2009.05.004
    [33]
    Gulizzi V, Rycroft CH, Benedetti I. Modelling intergranular and transgranular micro-cracking in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering, 2018, 329: 168-194 doi: 10.1016/j.cma.2017.10.005
    [34]
    Zhang P, Karimpour M, Balint D, et al. A controlled poisson voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis. Computational Materials Science, 2012, 64: 84-89 doi: 10.1016/j.commatsci.2012.02.022
    [35]
    Huang Y. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. [PhD Thesis]. America: Harvard University, 1991
    [36]
    Hall EO. The deformation and ageing of mild steel: III discussion of results. Proceedings of the Physical Society. Section B, 1951, 64(9): 747-753 doi: 10.1088/0370-1301/64/9/303
    [37]
    Petch NJ. The cleavage strength of polycrystals. Journal of the Iron and Steel Institute, 1953: 25-28
    [38]
    Ovid’ko IA, Sheinerman AG. Grain size effect on crack blunting in nanocrystalline materials. Scripta Materialia, 2008, 60(8): 627-630
    [39]
    Li H, Ebrahimi F. Ductile-to-brittle transition in nanocrystalline metals. Advanced Materials, 2005, 17(16): 1969-1972 doi: 10.1002/adma.200500436
    [40]
    Li H, Ebrahimi F. Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals. Applied Physics Letters, 2004, 84(21): 4307-4309 doi: 10.1063/1.1756198
    [41]
    Ebrahimi F, Liscano A, Kong D, et al. Fracture of bulk face centered cubic (FCC) metallic nanostructures. Reviews on Advanced Materials Science, 2006, 13: 33-40
  • Related Articles

    [1]Sun Yanxin, Wang Cheng, Wang Haoyu, Wang Xin, Guo Yuyang, Qiao Boyang. NUMERICAL SIMULATION AND EXPERIMENTAL RESEARCH ON THE DAMAGE EFFECT OF HIGH-STRENGTH CONCRETE UNDER EXPLOSION LOAD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3243-3261. DOI: 10.6052/0459-1879-24-195
    [2]Wu Di, Wang Yuke, Chen Xin. LIMIT ANALYSIS OF 3D SOIL SLOPES CONSIDERING THE EARTHQUAKE AND NONLINEAR STRENGTH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1426-1438. DOI: 10.6052/0459-1879-23-408
    [3]Mao Jie, Wang Yanli, Wang Hao. DIRECT NUMERICAL SIMULATION OF MHD FLOW IN CONDUCTING SQUARE DUCTS WITH INCLINED FRINGING MAGNETIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1387-1395. DOI: 10.6052/0459-1879-18-276
    [4]Hu Zongjun, Niu Zhongrong, Cheng Changzheng. A NEW SEMI-ANALYTIC ALGORITHM OF NEARLY SINGULAR INTEGRALS IN HIGH ORDER BOUNDARY ELEMENT ANALYSIS OF 3D POTENTIAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 417-427. DOI: 10.6052/0459-1879-13-353
    [5]Yang Yang, Teng Honghui, Wang Chun, Jiang Zonglin. NUMERICAL INVESTIGATION ON UNSTEADY SHOCK WAVE REFLECTIONS OVER THREE DIMENSIONAL INTERSECTING WEDGES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 205-212. DOI: 10.6052/0459-1879-2012-2-20120202
    [6]Ma Tianbao. Three dimensional numerical simulation study on the flow of the explosion shock wave around the wall[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1042-1049. DOI: 10.6052/0459-1879-2010-6-lxxb2009-459
    [7]Three dimensional numerical simulation of natural curved river[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 689-696. DOI: 10.6052/0459-1879-2005-6-2004-223
    [8]RZSEARCH ON THE THREE-DIMENSIONAL MIXING LAYER DEVELOPING WITH TIME[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 1-7. DOI: 10.6052/0459-1879-1996-1-1995-296
    [9]ADAPTIVE OPEN BOUNDARY CONDITION FOR DISPERSIVE WAVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 334-342. DOI: 10.6052/0459-1879-1993-3-1995-649
    [10]MATHEMATICAL MODELLING OF 3-DIMENSIONAL TURBULENT FLOW BY VORTICITY-VECTOR POTENTIAL METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(2): 157-164. DOI: 10.6052/0459-1879-1991-2-1995-822
  • Cited by

    Periodical cited type(3)

    1. Tianbao MA,Chentao WANG,Xiangzhao XU. Conservative high precision pseudo arc-length method for strong discontinuity of detonation wave. Applied Mathematics and Mechanics(English Edition). 2022(03): 417-436 .
    2. 赵金庆,马天宝. 基于伪弧长移动网格算法的爆炸与冲击多介质问题数值模拟. 兵工学报. 2020(S2): 200-210 .
    3. 栗建桥,马天宝,宁建国. 爆炸对自然磁场干扰机理. 力学学报. 2018(05): 1206-1218 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (329) PDF downloads (120) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return