Citation: | Han Shuaibin, Wang Yimin, Wu Conghai, Luo Yong, Li Hu. Hydrodynamic and acoustic mode decomposition of high subsonic turbulent jet and analysis of trapped wave. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3142-3151. DOI: 10.6052/0459-1879-24-114 |
[1] |
李晓东, 徐希海, 高军辉等. 喷流噪声研究进展与展望. 空气动力学学报, 2018, 36(3): 398-409 (Li Xiaodong, Xu Xihai, Gao Junhui, et al. Progress and prospect on jet noise study. Acta Aerodynamica Sinica, 2018, 36(3): 398-409 (in Chinese)
Li Xiaodong, Xu Xihai, Gao Junhui, et al. Progress and prospect on jet noise study. Acta Aerodynamica Sinica, 2018, 36(3): 398-409 (in Chinese)
|
[2] |
Suzuki T, Colonius T. Instability waves in a subsonic round jet detected using a near-field phased microphone array. Journal of Fluid Mechanics, 2006, 565: 197-226 doi: 10.1017/S0022112006001613
|
[3] |
陈坚强. 国家数值风洞(NNW)工程关键技术研究进展. 中国科学: 技术科学, 2021, 51(11): 1326-1347 (Chen Jianqiang. Advances in the key technologies of Chinese national numerical windtunnel project. Scientia Sinica Technologica, 2021, 51(11): 1326-1347 (in Chinese)
Chen Jianqiang. Advances in the key technologies of Chinese national numerical windtunnel project. Scientia Sinica Technologica, 2021, 51(11): 1326-1347 (in Chinese)
|
[4] |
袁先旭, 陈坚强, 杜雁霞等. 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展. 航空学报, 2021, 42(9): 625733 (Yuan Xianxu, Chen Jianqiang, Du Yanxia, et al. Research progress on fundamental CFD issues in national numerial windtunnel project. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625733 (in Chinese)
Yuan Xianxu, Chen Jianqiang, Du Yanxia, et al. Research progress on fundamental CFD issues in national numerial windtunnel project. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625733 (in Chinese)
|
[5] |
Brès GA, Jordan P, Colonius T, et al. Large eddy simulation of a turbulent mach 0.9 jet//Proceedings of the Center for Turbulence Research Summer Program, Stanford University, 2014
|
[6] |
Brès GA, Jaunet V, Le Rallic M, et al. Large eddy simulation for jet noise: the importance of getting the boundary layer right. AIAA Paper 2015-2535, 2015
|
[7] |
Zaman KBMQ, Fagan AF, Upadhyay P. Pressure fluctruations due to trapped waves in the initial region of compressible jets. Journal of Fluid Mechanics, 2022, 931: A30 doi: 10.1017/jfm.2021.954
|
[8] |
Jordan P, Jaunet V, Towne A, et al. Jet-flap interaction tones. Journal of Fluid Mechanics, 2018, 853: 333-358 doi: 10.1017/jfm.2018.566
|
[9] |
Schmidt OT, Towne A, Colonius T, et al. Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. Journal of Fluid Mechanics, 2017, 825: 1153-1181 doi: 10.1017/jfm.2017.407
|
[10] |
Towne A, Cavalieri AVG, Jordan P, et al. Acoustic resonance in the potential core of subsonic jets. Journal of Fluid Mechanics, 2017, 825: 1113-1152 doi: 10.1017/jfm.2017.346
|
[11] |
Howes WL. Distribution of time-averaged pressure fluctuations along the boundary of a round subsonic jet. NASA Tech. Rep. NASA-TN-D-468, 1960
|
[12] |
Ribner HS. Aerodynamic sound from fluid dilitations; a theory of the sound from jets and other flows. UTIA Report, No. 86, 1962
|
[13] |
Tinney C, Jordan P. The near pressure field of co-axial subsonic jets. Journal of Fluid Mechanics, 2008, 611: 175-204 doi: 10.1017/S0022112008001833
|
[14] |
Sinayoko S, Agarwal A, Hu Z. Flow decomposition and aerodynamic sound generation. Journal of Fluid Mechanics, 2011, 668: 335-350 doi: 10.1017/S0022112010004672
|
[15] |
Cabana M, Fortuné V, Jordan P, et al. Helmholtz decomposition of velocity field of a mixing layer: Application to the analysis of acoustic sources//Direct and Large-Eddy Simulation VI. Springer, Dordrecht, 2006: 513-520
|
[16] |
Doak P. Momentum potential theory of energy flux carried by momentum fluctuations. Journal of Sound and Vibration, 1989, 131(1): 67-90 doi: 10.1016/0022-460X(89)90824-9
|
[17] |
Stahl SL, Gaitonde D, Bhargav VN, et al. Theoretical model for coupled dual impinging jet aeroacoustic resonance. Physical Review Fluids, 2022, 7(10): 104606 doi: 10.1103/PhysRevFluids.7.104606
|
[18] |
Ho YW, Kim JW. A wall-resolved large-eddy simulation of deep cavity flow in acoustic resonance. Journal of Fluid Mechanics, 2021, 917: A17
|
[19] |
韩帅斌, 罗勇, 李虎等. 空腔流动的动量分解及能量输运特性. 力学学报, 2022, 54(2): 359-368 (Han Shuaibin, Luo Yong, Li Hu, et al. Momentum decomposition and energy transfer characteristics of open cavity flow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 359-368 (in Chinese) doi: 10.6052/0459-1879-21-569
Han Shuaibin, Luo Yong, Li Hu, et al. Momentum decomposition and energy transfer characteristics of open cavity flow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 359-368 (in Chinese) doi: 10.6052/0459-1879-21-569
|
[20] |
Han SB, Li H, Luo Y, et al. A hydro-acoustic mode decomposition method for velocity and pressure field and application to a subsonic turbulent jet. Physics of Fluids, 2023, 35: 076107 doi: 10.1063/5.0157377
|
[21] |
Mancinelli M, Pagliaroli T, Camussi R, et al. On the hydrodynamic and acoustic nature of pressure proper orthogonal decomposition modes in the near field of a compressible jet. Journal of Fluid Mechanics, 2018, 836: 998-1008 doi: 10.1017/jfm.2017.839
|
[22] |
Han SB, Luo Y, Li H, et al. Data-driven and physical property-based hydro-acoustic mode decomposition. Physics of Fluids, 2022, 34: 026102
|
[23] |
Towne A, Schmidt OT, Colonius T. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. Journal of Fluid Mechanics, 2018, 847: 821-867 doi: 10.1017/jfm.2018.283
|
[24] |
胡佳伟, 王掩刚, 刘汉儒等. 压气机叶栅非定常分离流动的模态分解方法对比研究. 西北工业大学学报, 2020, 38: 121-129 (Hu Jiawei, Wang Yangang, Liu Hanru, et al. Comparative study on modal decomposition methods of unsteady separated flow in compressor cascade. Journal of Northwestern Polytechnical University, 2020, 38: 121-129 (in Chinese)
Hu Jiawei, Wang Yangang, Liu Hanru, et al. Comparative study on modal decomposition methods of unsteady separated flow in compressor cascade. Journal of Northwestern Polytechnical University, 2020, 38: 121-129 (in Chinese)
|
[25] |
Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 70-73 doi: 10.1109/TAU.1967.1161901
|
[26] |
陈十一, 王建春, 郑钦敏等. 可压缩湍流的多尺度分析. 空气动力学学报, 2021, 39(1): 1-17 (Chen Shiyi, Wang Jianchun, Zheng Qinmin, et al. Multi-scale analyses of compressible turbulence. Acta Aerodynamica Sinica, 2021, 39(1): 1-17 (in Chinese)
Chen Shiyi, Wang Jianchun, Zheng Qinmin, et al. Multi-scale analyses of compressible turbulence. Acta Aerodynamica Sinica, 2021, 39(1): 1-17 (in Chinese)
|
[27] |
Towne A, Dawson S, Brès GA, et al. A database for reduced-complexity modeling of fluid flows. AIAA Journal, 2023, 61: 2867-2892 doi: 10.2514/1.J062203
|
[28] |
Brès GA, Jordan P, Jaunet V, et al. Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. Journal of Fluid Mechanics, 2018, 851: 83-124 doi: 10.1017/jfm.2018.476
|
[29] |
Cavalieri AV, Jordan P, Colonius T, et al. Axisymmetric superdirectivity in subsonic jets. Journal of Fluid Mechanics, 2012, 704: 388-420 doi: 10.1017/jfm.2012.247
|
[30] |
Chen Z, Towne A. An azimuthal Fourier domain formulation of the Ffowcs Williams and Hawkings equation. The Journal of the Acoustical Society of America, 2021, 150(3): 1967-1978 doi: 10.1121/10.0006234
|
[31] |
Nekkanti A, Schmidt OT. Modal analysis of acoustic directivity in turbulent jets. AIAA Journal, 2021, 59: 228-239 doi: 10.2514/1.J059425
|
[32] |
Nekkanti A, Schmidt OT, Frequency-time analysis, low-rank reconstruction and denoising of turbulent flows using SPOD. Journal of Fluid Mechanics, 2021, 926: A26
|
[1] | Yang Jing, Cui Kai, Tian Zhongwei, Li Guangli, Xiao Yao, Chang Siyuan. TYPE Ⅱ HYPERSONIC SHOCK WAVE INTERACTION ON A SWEPT-FORWARD FIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2815-2826. DOI: 10.6052/0459-1879-24-252 |
[2] | Wang Fanglong, Shen Yizhou, Xu Yanlong, Zhou Shengxi, Yang Zhichun. RAINBOW TRAPPING OF FLEXURAL WAVES AND ITS APPLICATION IN ENERGY HARVESTING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2695-2707. DOI: 10.6052/0459-1879-22-107 |
[3] | Hu Ran, Chen Yifeng, Wan Jiamin, Zhou Chuangbing. SUPERCRITICAL CO2 WATER DISPLACEMENTS AND CO2 CAPILLARY TRAPPING: MICROMODEL EXPERIMENT AND NUMERICAL SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 638-648. DOI: 10.6052/0459-1879-16-237 |
[4] | Mingyi Yang, Jichao chen. The theoretical analysis of acoustic plate wave in piezoelectric plate with finite fluid loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 479-484. DOI: 10.6052/0459-1879-2008-4-2007-301 |
[5] | Zongmin Hu, Zonglin Jiang. Wave dynamic processes in cellular detonation reflection from wedges[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 33-41. DOI: 10.6052/0459-1879-2007-1-2005-431 |
[6] | Zhenhua Huang, M.S. Ghidaoui. A model for the scattering of long waves by slotted breakwaters in the presence of currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 1-9. DOI: 10.6052/0459-1879-2007-1-2006-240 |
[7] | CRACK TRAPPING PHENOMENA IN DYNAMIC CRACK PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 413-420. DOI: 10.6052/0459-1879-1997-4-1995-246 |
[8] | GENERALIZEDMULTI-TRANSMITTINGBOUNDARY:SCALAR WAVE CASE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(1): 69-78. DOI: 10.6052/0459-1879-1995-1-1995-406 |
[9] | SYMMETRIC BIFURCATION OF STOKES WATER WAVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(1): 32-39. DOI: 10.6052/0459-1879-1992-1-1995-708 |
[10] | PAN LIANG-JU. ABOUT AN INTGRAL OF SURFACE WAVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1957, 1(1): 131-137. DOI: 10.6052/0459-1879-1957-1-1957-016 |