Citation: | Duan Yajuan, Xu Zongrui, Hao Qi, H. Kato, Qiao Jichao. Creep mechanism of Pd20Pt20Cu20Ni20P20 high entropy amorphous alloy. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2913-2923. DOI: 10.6052/0459-1879-24-092 |
[1] |
Greer AL. Metallic glasses. Science, 1995, 267(5206): 1947-1953 doi: 10.1126/science.267.5206.1947
|
[2] |
Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012, 57(3): 487-656 doi: 10.1016/j.pmatsci.2011.07.001
|
[3] |
蒋敏强, 戴兰宏. 非晶态固体力学. 科学通报, 2022, 67: 2578-2593 (Jiang Minqiang, Dai Lanhong. Mechanics of amorphous solids. China Science Bulletin, 2022, 67: 2578-2593 (in Chinese) doi: 10.1360/TB-2022-0181
Jiang Minqiang, Dai Lanhong. Mechanics of amorphous solids. China Science Bulletin, 2022, 67: 2578-2593 (in Chinese) doi: 10.1360/TB-2022-0181
|
[4] |
Gao K, Zhu XG, Chen L, et al. Recent development in the application of bulk metallic glasses. Journal of Materials Science & Technology, 2022, 131: 115-121
|
[5] |
Telford M. The case for bulk metallic glass. Materials Today, 2004, 7(3): 36-43 doi: 10.1016/S1369-7021(04)00124-5
|
[6] |
Miracle DB, Miller JD, Senkov ON, et al. Exploration and development of high entropy alloys for structural applications. Entropy, 2014, 16(1): 494-525 doi: 10.3390/e16010494
|
[7] |
Jien WY. Recent progress in high entropy alloys. Annales De Chimie – Science des Materiaux, 2006, 31(6): 633-648 doi: 10.3166/acsm.31.633-648
|
[8] |
Ye YF, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects. Materials Today, 2016, 19(6): 349-362 doi: 10.1016/j.mattod.2015.11.026
|
[9] |
Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, 61: 1-93 doi: 10.1016/j.pmatsci.2013.10.001
|
[10] |
Li W, Xie D, Li D, et al. Mechanical behavior of high-entropy alloys. Progress in Materials Science, 2021, 118: 100777 doi: 10.1016/j.pmatsci.2021.100777
|
[11] |
Wang WH. High-entropy metallic glasses. JOM, 2014, 66(10): 2067-2077 doi: 10.1007/s11837-014-1002-3
|
[12] |
Luan HW, Zhang X, Ding HY, et al. High-entropy induced a glass-to-glass transition in a metallic glass. Nature Communications, 2022, 13(1): 2183 doi: 10.1038/s41467-022-29789-1
|
[13] |
Jing J, Lu Z, Shen J, et al. Decoupling between calorimetric and dynamical glass transitions in high-entropy metallic glasses. Nature Communications, 2021, 12(1): 1-10 doi: 10.1038/s41467-020-20314-w
|
[14] |
Takeuchi A, Chen N, Wada T, et al. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics, 2011, 19(10): 1546-1554 doi: 10.1016/j.intermet.2011.05.030
|
[15] |
Gong P, Zhao S, Ding H, et al. Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass. Journal of Materials Research, 2015, 30(18): 2772-2782 doi: 10.1557/jmr.2015.253
|
[16] |
Luan H, Li K, Shi L, et al. Recent progress in high-entropy metallic glasses. Journal of Materials Science & Technology, 2023, 161: 50-62
|
[17] |
Gong P, Yao K, Ding H. Crystallization kinetics of TiZrHfCuNiBe high entropy bulk metallic glass. Material Letters, 2015, 156: 146-149 doi: 10.1016/j.matlet.2015.05.018
|
[18] |
Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Materialia, 2007, 55(12): 4067-4109 doi: 10.1016/j.actamat.2007.01.052
|
[19] |
Cao P, Short MP, Yip S. Understanding the mechanisms of amorphous creep through molecular simulation. Proceedings of the National Academy of Science, 2017, 114(52): 13631-13636 doi: 10.1073/pnas.1708618114
|
[20] |
Greer AL, Cheng YQ, Ma E. Shear bands in metallic glasses. Materials Science and Engineering: R: Reports, 2013, 74(4): 71-132 doi: 10.1016/j.mser.2013.04.001
|
[21] |
董杰, 王雨田, 胡晶等. 非晶合金剪切带动力学行为研究. 力学学报, 2020, 52(2): 379-391 (Dong Jie, Wang Yutian, Hu Jing, et al. Shear-band dynamics in metallic glasses. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 379-391 (in Chinese) doi: 10.6052/0459-1879-19-378
Dong Jie, Wang Yutian, Hu Jing, et al. Shear-band dynamics in metallic glasses. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 379-391 (in Chinese) doi: 10.6052/0459-1879-19-378
|
[22] |
Li N, Chen Y, Jiang MQ, et al. A thermoplastic forming map of a Zr-based bulk metallic glass. Acta Materialia, 2013, 61(6): 1921-1931 doi: 10.1016/j.actamat.2012.12.013
|
[23] |
Sun B, Yu H, Jiao W, et al. Plasticity of ductile metallic glasses: A self-organized critical state. Physical Review Letters, 2010, 105(3): 035501 doi: 10.1103/PhysRevLett.105.035501
|
[24] |
Gan KF, Jiang SS, Huang YJ, et al. Elucidating how correlated operation of shear transformation zones leads to shear localization and fracture in metallic glasses: Tensile tests on CuZr based metallic-glass microwires, molecular dynamics simulations, and modelling. International Journal of Plasticity, 2019, 119: 1-20 doi: 10.1016/j.ijplas.2019.02.011
|
[25] |
王云江, 魏丹, 韩懂等. 非晶态固体的结构可以决定性能吗? 力学学报, 2020, 52(2): 303-317 (Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 303-317 (in Chinese)
Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 303-317 (in Chinese)
|
[26] |
Xue P, Huang Y, Guo S, et al. Understanding the structure-Poisson’s ratio relation in bulk metallic glass. Journal of Materials Science, 2018, 53(10): 7891-7899 doi: 10.1007/s10853-018-2098-6
|
[27] |
Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104: 250-329 doi: 10.1016/j.pmatsci.2019.04.005
|
[28] |
王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176103 (Wang Zheng, Wang Weihua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103 (in Chinese)
Wang Zheng, Wang Weihua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103 (in Chinese)
|
[29] |
Sun Y, Concustell A, Greer AL. Thermomechanical processing of metallic glasses: extending the range of the glassy state. Nature Reviews Materials, 2016, 1(9): 16039 doi: 10.1038/natrevmats.2016.39
|
[30] |
Hao Q, Lyu GJ, Pineda E, et al. A hierarchically correlated flow defect model for metallic glass: Universal understanding of stress relaxation and creep. International Journal of Plasticity, 2022, 154: 103288 doi: 10.1016/j.ijplas.2022.103288
|
[31] |
Duan YJ, Qiao JC, Wada T, et al. Inelastic deformation of metallic glasses under dynamic cyclic loading. Scripta Materialia, 2021, 194: 113675 doi: 10.1016/j.scriptamat.2020.113675
|
[32] |
陈恳, 黄波, 王庆等. 通过表面机械加工调控Zr52.5Cu17.9Ni14.6Al10Ti5非晶合金的结构和韧性. 力学学报, 2020, 52(2): 400-407 (Chen Ken, Huang Bo, Wang Qing, et al. Structure and toughness modulation of a Zr52.5Cu17.9Ni14.6Al10Ti5 metallic glass by surface mechanical attrition treatment. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 400-407 (in Chinese)
Chen Ken, Huang Bo, Wang Qing, et al. Structure and toughness modulation of a Zr52.5Cu17.9Ni14.6Al10Ti5 metallic glass by surface mechanical attrition treatment. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 400-407 (in Chinese)
|
[33] |
Duan YJ, Zhang LT, Qiao JC, et al. Intrinsic correlation between the fraction of liquidlike zones and the β relaxation in high-entropy metallic glasses. Physical Review Letters, 2022, 129(17): 175501 doi: 10.1103/PhysRevLett.129.175501
|
[34] |
Duan YJ, Nabahat M, Tong Y, et al. Connection between mechanical relaxation and equilibration kinetics in a high-entropy metallic glass. Physical Review Letters, 2024, 132(5): 056101 doi: 10.1103/PhysRevLett.132.056101
|
[35] |
汪卫华. 非晶态物质的本质和特性. 物理学进展, 2013, 33(5): 177-351 (Wang Weihua. The nature and properties of amorphous matter. Progress in Physics, 2013, 33(5): 177-351 (in Chinese)
Wang Weihua. The nature and properties of amorphous matter. Progress in Physics, 2013, 33(5): 177-351 (in Chinese)
|
[36] |
Sun X, Mo G, Zhao LZ, et al. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica, 2017, 66(17): 176109-176109 doi: 10.7498/aps.66.176109
|
[37] |
Lei TJ, DaCosta LR, Liu M, et al. Microscopic characterization of structural relaxation and cryogenic rejuvenation in metallic glasses. Acta Materialia, 2019, 164: 165-170 doi: 10.1016/j.actamat.2018.10.036
|
[38] |
Packard CE, Witmer LM, Schuh CA. Hardening of a metallic glass during cyclic loading in the elastic range. Applied Physics Letters, 2008, 92(17): 171911 doi: 10.1063/1.2919722
|
[39] |
Menzel BC, Dauskardt RH. Stress-life fatigue behavior of a Zr-based bulk metallic glass. Acta Materialia, 2006, 54(4): 935-943 doi: 10.1016/j.actamat.2005.10.021
|
[40] |
张浪渟, 乔吉超. 物理时效和循环加载下高熵金属玻璃的弛豫行为. 中国科学: 物理学 力学 天文学, 2021, 51(8): 086111 (Zhang Langting, Qiao Jichao. Relaxation behavior of high-entropy bulk metallic glass: Influences of physical aging and cyclic loading. Scientia Sinica : Physica, Mechanica & Astronomica, 2021, 51: 086111 (in Chinese)
Zhang Langting, Qiao Jichao. Relaxation behavior of high-entropy bulk metallic glass: Influences of physical aging and cyclic loading. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51: 086111 (in Chinese)
|
[41] |
Krisponeit JO, Pitikaris S, Avila KE, et al. Crossover from random three-dimensional avalanches to correlated nano shear bands in metallic glasses. Nature Communications, 2014, 5(1): 3616 doi: 10.1038/ncomms4616
|
[42] |
Angell CA, Ngai KL, McKenna GB, et al. Relaxation in glassforming liquids and amorphous solids. Journal of Applied Physics, 2000, 88(6): 3113-3157 doi: 10.1063/1.1286035
|
[43] |
Nabahat M, Amini N, Pineda E, et al. Delayed elasticity of metallic glasses: Loading time and temperature dependences of the anelastic relaxation. Physical Review Materials, 2022, 6(12): 125601 doi: 10.1103/PhysRevMaterials.6.125601
|
[44] |
Tong Y, Dmowski W, Bei H, et al. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep. Acta Materialia, 2018, 148: 384-390 doi: 10.1016/j.actamat.2018.02.019
|
[45] |
徐宗睿, 郝奇, 张浪渟等. 基于准点缺陷理论探索非晶合金蠕变机制. 力学学报, 2022, 54(6): 1590-1600 (Xu Zongrui, Hao Qi, Zhang Langting, et al. Probing into the creep mechanism of amorphous alloy based on quasi-point theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1590-1600 (in Chinese)
Xu Zongrui, Hao Qi, Zhang Langting, et al. Probing into the creep mechanism of amorphous alloy based on quasi-point theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1590-1600 (in Chinese)
|
[46] |
段亚娟, 乔吉超. Pd基非晶合金动态弛豫机制和应力松弛行为. 物理学报, 2022, 71(8): 086101 (Duan Yajuan, Qiao Jichao. Dynamic relaxation characteristics and stress relaxation behavior of Pd-based metallic glass. Acta Physica Sinica, 2022, 71(8): 086101 (in Chinese) doi: 10.7498/aps.71.20212025
Duan Yajuan, Qiao Jichao. Dynamic relaxation characteristics and stress relaxation behavior of Pd-based metallic glass. Acta Physica Sinica, 2022, 71(8): 086101 (in Chinese) doi: 10.7498/aps.71.20212025
|
[47] |
Knuyt G, Schepper LD, Stals LM. Calculation of elastic constants for an amorphous metal and the influence of relaxation. Journal of Physics F: Metal Physics, 1986, 16(12): 1989 doi: 10.1088/0305-4608/16/12/011
|
[48] |
Pineda E. Theoretical approach to Poisson ratio behavior during structural changes in metallic glasses. Physical Review B, 2006, 73(10): 104109 doi: 10.1103/PhysRevB.73.104109
|
[49] |
Bauwens-Crowet C, Bauwens JC. The mechanism of creep behaviour in glassy polymers. Journal of Materials Science, 1975, 10(10): 1779-1787 doi: 10.1007/BF00554940
|
[50] |
Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977, 25(4): 407-415 doi: 10.1016/0001-6160(77)90232-2
|
[51] |
Bletry M, Guyot P, Blandin JJ, et al. Free volume model: High-temperature deformation of a Zr-based bulk metallic glass. Acta Materialia, 2006, 54(5): 1257-1263 doi: 10.1016/j.actamat.2005.10.054
|
[52] |
Bletry M, Guyot P, Bréchet Y, et al. Transient regimes during high-temperature deformation of a bulk metallic glass: A free volume approach. Acta Materialia, 2007, 55(18): 6331-6337 doi: 10.1016/j.actamat.2007.07.047
|
[53] |
Wang YM, Zhang M, Liu L. Mechanical annealing in the homogeneous deformation of bulk metallic glass under elastostatic compression. Scripta Materialia, 2015, 102: 67-70 doi: 10.1016/j.scriptamat.2015.02.015
|
[54] |
Peng HL, Li MZ, Wang WH. Stress-versus temperature-induced structural evolution in metallic glasses. Applied Physics Letters, 2013, 102(13): 131908 doi: 10.1063/1.4800531
|
[55] |
Heggen M, Spaepen F, Feuerbacher M. Creation and annihilation of free volume during homogeneous flow of a metallic glass. Journal of Applied Physics, 2005, 97(3): 033506
|
[56] |
Perez J. Homogeneous flow and anelastic/plastic deformation of metallic glasses. Acta Metallurgica, 1984, 32(12): 2163-2173 doi: 10.1016/0001-6160(84)90159-7
|
[57] |
Li W, Zuo XF, Liu R, et al. Multi-scale defects activation in Gd18.33Tb18.33Dy18.34Co17.5Al27.5 high-entropy metallic glasses revealed by nanoindentation. International Journal of Plasticity, 2024, 174: 103893 doi: 10.1016/j.ijplas.2024.103893
|
[58] |
周光全, 刘孝敏. 黏弹性理论. 合肥: 中国科学技术大学出版社, 1996
|
[59] |
杨挺青. 黏弹性力学. 武汉: 华中理工大学出版社, 1990
|
[60] |
Xu ZR, Qiao JC, Wang J, et al. Comprehensive insights into the thermal and mechanical effects of metallic glasses via creep. Journal of Materials Science & Technology, 2022, 99: 39-47
|
[61] |
Lyu Z, Yuan C, Ke H, et al. Defects activation in CoFe-based metallic glasses during creep deformation. Journal of Materials Science & Technology, 2021, 69: 42-47
|
[62] |
Taub AI, Spaepen F. Ideal elastic, anelastic and viscoelastic deformation of a metallic glass. Journal of Materials Science, 1981, 16(11): 3087-3092 doi: 10.1007/BF00540316
|
[63] |
Ke HB, Zhang P, Sun BA, et al. Dissimilar nanoscaled structural heterogeneity in U-based metallic glasses revealed by nanoindentation. Journal of Alloys and Compounds, 2019, 788: 391-396 doi: 10.1016/j.jallcom.2019.02.256
|
[64] |
Priezjev NV. Accelerated relaxation in disordered solids under cyclic loading with alternating shear orientation. Journal of Non-Crystalline Solids, 2019, 525: 119683 doi: 10.1016/j.jnoncrysol.2019.119683
|
[65] |
Flores KM, Johnson WL, Dauskardt RH. Fracture and fatigue behavior of a Zr-Ti-Nb ductile phase reinforced bulk metallic glass matrix composite. Scripta Materialia, 2003, 49(12): 1181-1187 doi: 10.1016/j.scriptamat.2003.08.020
|
[66] |
Jiao W, Wen P, Bai HY, et al. Transiently suppressed relaxations in metallic glass. Applied Physics Letters, 2013, 103: 161902 doi: 10.1063/1.4825364
|
[67] |
Lemaître A, Caroli C. Rate-dependent avalanche size in athermally sheared amorphous solids. Physical Review Letters, 2009, 103(6): 065501 doi: 10.1103/PhysRevLett.103.065501
|
[68] |
乔吉超, 张浪渟, 童钰等. 基于微观结构非均匀性的非晶合金力学行为. 力学进展, 2022, 52(1): 117-152 (Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechancial properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038
Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechancial properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038
|
[1] | Zhang Jian, Hao Qi, Xing Guanghui, Qiao Jichao. PROBING ON MICROSTRUCTURAL HETEROGENEITY OF La-BASED METALLIC GLASS: BASED ON THE STRESS RELAXATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2616-2624. DOI: 10.6052/0459-1879-24-077 |
[2] | Hao Qi, Qiao Jichao. STRESS RELAXATION DYNAMICS FOR AMORPHOUS ALLOYS BASED ON THE EVOLUTION OF MICROSTRUCTURAL HETEROGENEITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3058-3067. DOI: 10.6052/0459-1879-22-255 |
[3] | Shen Tao, Zhang Chongfeng, Wang Weijun, Feng Wenbo, Qiu Huayong. DYNAMIC SIMULATION ANALYSIS OF CAPTURE AND BUFFER SYSTEM BASED ON CLAW-TYPE DOCKING MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1590-1598. DOI: 10.6052/0459-1879-20-108 |
[4] | Zhang Xiaoshun, Zhang Dingguo, Hong Jiazheny. RIGID-FLEXIBLE COUPLING DYNAMIC MODELING AND SIMULATION WITH THE LONGITUDINAL DEFORMATION INDUCED CURVATURE EFFECT FOR A ROTATING FLEXIBLE BEAM UNDER LARGE DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 692-701. DOI: 10.6052/0459-1879-15-385 |
[5] | Duan Wenjie Wang Qi Wang Tianshu. imulation research of a passive dynamic walker with round feet based on non-smooth method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 765-774. DOI: 10.6052/0459-1879-2011-4-lxxb2010-277 |
[6] | Xiaobo Li, Yuewu Liu, Hongzhi Sheng, Ruyong Feng. A model for the flow of emulsion in porous media with micro-heterogeneities[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 313-317. DOI: 10.6052/0459-1879-2009-3-2008-027 |
[7] | 有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302 |
[8] | 基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655 |
[9] | THE ESTABLISHMENT OF THE GENERAL DYNAMIC EQUATIONS OF TREE-STRUCTURE RIGID BODIES SYSTEM WITH BALL JOINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(1): 95-98. DOI: 10.6052/0459-1879-1990-1-1995-917 |