EI、Scopus 收录
中文核心期刊
Duan Yajuan, Xu Zongrui, Hao Qi, H. Kato, Qiao Jichao. Creep mechanism of Pd20Pt20Cu20Ni20P20 high entropy amorphous alloy. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2913-2923. DOI: 10.6052/0459-1879-24-092
Citation: Duan Yajuan, Xu Zongrui, Hao Qi, H. Kato, Qiao Jichao. Creep mechanism of Pd20Pt20Cu20Ni20P20 high entropy amorphous alloy. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2913-2923. DOI: 10.6052/0459-1879-24-092

CREEP MECHANISM OF Pd20Pt20Cu20Ni20P20 HIGH ENTROPY AMORPHOUS ALLOY

  • Received Date: February 28, 2024
  • Accepted Date: August 08, 2024
  • Available Online: August 08, 2024
  • Published Date: August 09, 2024
  • In the current work, a Pd20Pt20Cu20Ni20P20 high-entropy metallic glass was selected as the model system to explore the deformation mechanisms under different loading conditions. Creep cyclic loading and cyclic loading-unloading experiments were carried out to elucidate the deformation mechanisms, steady-state creep rate, creep stress index, and the evolution of relaxation time spectra. This study systematically investigated the effects of temperature, cyclic loading, and recovery time on the creep behavior of this high-entropy metallic glass, offering a comprehensive analysis of its response to various stress and thermal conditions. Our findings revealed that the creep behavior of the alloy significantly depended on both temperature and stress, exhibiting superior creep resistance under low temperature and stress conditions. In these environments, the deformation was primarily dominated by elastic deformation. However, with the increase of temperature, the resistance to creep progressively weakened, and viscoelastic (viscoplastic) deformation became the dominant deformation mechanism. Notably, the impact of cyclic stress on creep deformation was found to be negligible at low temperatures but became markedly significant at higher temperatures. This suggests that cyclic loading exacerbated creep behavior, leading to a notable increase in the steady-state creep rate as temperature rises. Recovery duration markedly affected the instantaneous elastic deformation and viscoelastic deformation, albeit with a limited modulatory capacity on viscoelastic deformation. After unloading, the deformation capacity of model alloy gradually increases, alleviating creep inhibition. Furthermore, the wide distribution of relaxation times and their sensitive response to cyclic stress highlighted the complexity of the creep mechanism and the evolution of structures across multiple time scales. This study, through systematic experiments and analysis, deepened the understanding of the creep behavior and control mechanisms of high-entropy metallic glasses. It provides important theoretical foundations and practical guidance for the design and application of high-performance high-entropy metallic glasses and holds significance for the future development of advanced materials with enhanced creep resistance.
  • [1]
    Greer AL. Metallic glasses. Science, 1995, 267(5206): 1947-1953 doi: 10.1126/science.267.5206.1947
    [2]
    Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012, 57(3): 487-656 doi: 10.1016/j.pmatsci.2011.07.001
    [3]
    蒋敏强, 戴兰宏. 非晶态固体力学. 科学通报, 2022, 67: 2578-2593 (Jiang Minqiang, Dai Lanhong. Mechanics of amorphous solids. China Science Bulletin, 2022, 67: 2578-2593 (in Chinese) doi: 10.1360/TB-2022-0181

    Jiang Minqiang, Dai Lanhong. Mechanics of amorphous solids. China Science Bulletin, 2022, 67: 2578-2593 (in Chinese) doi: 10.1360/TB-2022-0181
    [4]
    Gao K, Zhu XG, Chen L, et al. Recent development in the application of bulk metallic glasses. Journal of Materials Science & Technology, 2022, 131: 115-121
    [5]
    Telford M. The case for bulk metallic glass. Materials Today, 2004, 7(3): 36-43 doi: 10.1016/S1369-7021(04)00124-5
    [6]
    Miracle DB, Miller JD, Senkov ON, et al. Exploration and development of high entropy alloys for structural applications. Entropy, 2014, 16(1): 494-525 doi: 10.3390/e16010494
    [7]
    Jien WY. Recent progress in high entropy alloys. Annales De Chimie – Science des Materiaux, 2006, 31(6): 633-648 doi: 10.3166/acsm.31.633-648
    [8]
    Ye YF, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects. Materials Today, 2016, 19(6): 349-362 doi: 10.1016/j.mattod.2015.11.026
    [9]
    Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, 61: 1-93 doi: 10.1016/j.pmatsci.2013.10.001
    [10]
    Li W, Xie D, Li D, et al. Mechanical behavior of high-entropy alloys. Progress in Materials Science, 2021, 118: 100777 doi: 10.1016/j.pmatsci.2021.100777
    [11]
    Wang WH. High-entropy metallic glasses. JOM, 2014, 66(10): 2067-2077 doi: 10.1007/s11837-014-1002-3
    [12]
    Luan HW, Zhang X, Ding HY, et al. High-entropy induced a glass-to-glass transition in a metallic glass. Nature Communications, 2022, 13(1): 2183 doi: 10.1038/s41467-022-29789-1
    [13]
    Jing J, Lu Z, Shen J, et al. Decoupling between calorimetric and dynamical glass transitions in high-entropy metallic glasses. Nature Communications, 2021, 12(1): 1-10 doi: 10.1038/s41467-020-20314-w
    [14]
    Takeuchi A, Chen N, Wada T, et al. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics, 2011, 19(10): 1546-1554 doi: 10.1016/j.intermet.2011.05.030
    [15]
    Gong P, Zhao S, Ding H, et al. Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass. Journal of Materials Research, 2015, 30(18): 2772-2782 doi: 10.1557/jmr.2015.253
    [16]
    Luan H, Li K, Shi L, et al. Recent progress in high-entropy metallic glasses. Journal of Materials Science & Technology, 2023, 161: 50-62
    [17]
    Gong P, Yao K, Ding H. Crystallization kinetics of TiZrHfCuNiBe high entropy bulk metallic glass. Material Letters, 2015, 156: 146-149 doi: 10.1016/j.matlet.2015.05.018
    [18]
    Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Materialia, 2007, 55(12): 4067-4109 doi: 10.1016/j.actamat.2007.01.052
    [19]
    Cao P, Short MP, Yip S. Understanding the mechanisms of amorphous creep through molecular simulation. Proceedings of the National Academy of Science, 2017, 114(52): 13631-13636 doi: 10.1073/pnas.1708618114
    [20]
    Greer AL, Cheng YQ, Ma E. Shear bands in metallic glasses. Materials Science and Engineering: R: Reports, 2013, 74(4): 71-132 doi: 10.1016/j.mser.2013.04.001
    [21]
    董杰, 王雨田, 胡晶等. 非晶合金剪切带动力学行为研究. 力学学报, 2020, 52(2): 379-391 (Dong Jie, Wang Yutian, Hu Jing, et al. Shear-band dynamics in metallic glasses. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 379-391 (in Chinese) doi: 10.6052/0459-1879-19-378

    Dong Jie, Wang Yutian, Hu Jing, et al. Shear-band dynamics in metallic glasses. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 379-391 (in Chinese) doi: 10.6052/0459-1879-19-378
    [22]
    Li N, Chen Y, Jiang MQ, et al. A thermoplastic forming map of a Zr-based bulk metallic glass. Acta Materialia, 2013, 61(6): 1921-1931 doi: 10.1016/j.actamat.2012.12.013
    [23]
    Sun B, Yu H, Jiao W, et al. Plasticity of ductile metallic glasses: A self-organized critical state. Physical Review Letters, 2010, 105(3): 035501 doi: 10.1103/PhysRevLett.105.035501
    [24]
    Gan KF, Jiang SS, Huang YJ, et al. Elucidating how correlated operation of shear transformation zones leads to shear localization and fracture in metallic glasses: Tensile tests on CuZr based metallic-glass microwires, molecular dynamics simulations, and modelling. International Journal of Plasticity, 2019, 119: 1-20 doi: 10.1016/j.ijplas.2019.02.011
    [25]
    王云江, 魏丹, 韩懂等. 非晶态固体的结构可以决定性能吗? 力学学报, 2020, 52(2): 303-317 (Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 303-317 (in Chinese)

    Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 303-317 (in Chinese)
    [26]
    Xue P, Huang Y, Guo S, et al. Understanding the structure-Poisson’s ratio relation in bulk metallic glass. Journal of Materials Science, 2018, 53(10): 7891-7899 doi: 10.1007/s10853-018-2098-6
    [27]
    Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104: 250-329 doi: 10.1016/j.pmatsci.2019.04.005
    [28]
    王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176103 (Wang Zheng, Wang Weihua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103 (in Chinese)

    Wang Zheng, Wang Weihua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103 (in Chinese)
    [29]
    Sun Y, Concustell A, Greer AL. Thermomechanical processing of metallic glasses: extending the range of the glassy state. Nature Reviews Materials, 2016, 1(9): 16039 doi: 10.1038/natrevmats.2016.39
    [30]
    Hao Q, Lyu GJ, Pineda E, et al. A hierarchically correlated flow defect model for metallic glass: Universal understanding of stress relaxation and creep. International Journal of Plasticity, 2022, 154: 103288 doi: 10.1016/j.ijplas.2022.103288
    [31]
    Duan YJ, Qiao JC, Wada T, et al. Inelastic deformation of metallic glasses under dynamic cyclic loading. Scripta Materialia, 2021, 194: 113675 doi: 10.1016/j.scriptamat.2020.113675
    [32]
    陈恳, 黄波, 王庆等. 通过表面机械加工调控Zr52.5Cu17.9Ni14.6Al10Ti5非晶合金的结构和韧性. 力学学报, 2020, 52(2): 400-407 (Chen Ken, Huang Bo, Wang Qing, et al. Structure and toughness modulation of a Zr52.5Cu17.9Ni14.6Al10Ti5 metallic glass by surface mechanical attrition treatment. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 400-407 (in Chinese)

    Chen Ken, Huang Bo, Wang Qing, et al. Structure and toughness modulation of a Zr52.5Cu17.9Ni14.6Al10Ti5 metallic glass by surface mechanical attrition treatment. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 400-407 (in Chinese)
    [33]
    Duan YJ, Zhang LT, Qiao JC, et al. Intrinsic correlation between the fraction of liquidlike zones and the β relaxation in high-entropy metallic glasses. Physical Review Letters, 2022, 129(17): 175501 doi: 10.1103/PhysRevLett.129.175501
    [34]
    Duan YJ, Nabahat M, Tong Y, et al. Connection between mechanical relaxation and equilibration kinetics in a high-entropy metallic glass. Physical Review Letters, 2024, 132(5): 056101 doi: 10.1103/PhysRevLett.132.056101
    [35]
    汪卫华. 非晶态物质的本质和特性. 物理学进展, 2013, 33(5): 177-351 (Wang Weihua. The nature and properties of amorphous matter. Progress in Physics, 2013, 33(5): 177-351 (in Chinese)

    Wang Weihua. The nature and properties of amorphous matter. Progress in Physics, 2013, 33(5): 177-351 (in Chinese)
    [36]
    Sun X, Mo G, Zhao LZ, et al. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica, 2017, 66(17): 176109-176109 doi: 10.7498/aps.66.176109
    [37]
    Lei TJ, DaCosta LR, Liu M, et al. Microscopic characterization of structural relaxation and cryogenic rejuvenation in metallic glasses. Acta Materialia, 2019, 164: 165-170 doi: 10.1016/j.actamat.2018.10.036
    [38]
    Packard CE, Witmer LM, Schuh CA. Hardening of a metallic glass during cyclic loading in the elastic range. Applied Physics Letters, 2008, 92(17): 171911 doi: 10.1063/1.2919722
    [39]
    Menzel BC, Dauskardt RH. Stress-life fatigue behavior of a Zr-based bulk metallic glass. Acta Materialia, 2006, 54(4): 935-943 doi: 10.1016/j.actamat.2005.10.021
    [40]
    张浪渟, 乔吉超. 物理时效和循环加载下高熵金属玻璃的弛豫行为. 中国科学: 物理学 力学 天文学, 2021, 51(8): 086111 (Zhang Langting, Qiao Jichao. Relaxation behavior of high-entropy bulk metallic glass: Influences of physical aging and cyclic loading. Scientia Sinica : Physica, Mechanica & Astronomica, 2021, 51: 086111 (in Chinese)

    Zhang Langting, Qiao Jichao. Relaxation behavior of high-entropy bulk metallic glass: Influences of physical aging and cyclic loading. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51: 086111 (in Chinese)
    [41]
    Krisponeit JO, Pitikaris S, Avila KE, et al. Crossover from random three-dimensional avalanches to correlated nano shear bands in metallic glasses. Nature Communications, 2014, 5(1): 3616 doi: 10.1038/ncomms4616
    [42]
    Angell CA, Ngai KL, McKenna GB, et al. Relaxation in glassforming liquids and amorphous solids. Journal of Applied Physics, 2000, 88(6): 3113-3157 doi: 10.1063/1.1286035
    [43]
    Nabahat M, Amini N, Pineda E, et al. Delayed elasticity of metallic glasses: Loading time and temperature dependences of the anelastic relaxation. Physical Review Materials, 2022, 6(12): 125601 doi: 10.1103/PhysRevMaterials.6.125601
    [44]
    Tong Y, Dmowski W, Bei H, et al. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep. Acta Materialia, 2018, 148: 384-390 doi: 10.1016/j.actamat.2018.02.019
    [45]
    徐宗睿, 郝奇, 张浪渟等. 基于准点缺陷理论探索非晶合金蠕变机制. 力学学报, 2022, 54(6): 1590-1600 (Xu Zongrui, Hao Qi, Zhang Langting, et al. Probing into the creep mechanism of amorphous alloy based on quasi-point theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1590-1600 (in Chinese)

    Xu Zongrui, Hao Qi, Zhang Langting, et al. Probing into the creep mechanism of amorphous alloy based on quasi-point theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1590-1600 (in Chinese)
    [46]
    段亚娟, 乔吉超. Pd基非晶合金动态弛豫机制和应力松弛行为. 物理学报, 2022, 71(8): 086101 (Duan Yajuan, Qiao Jichao. Dynamic relaxation characteristics and stress relaxation behavior of Pd-based metallic glass. Acta Physica Sinica, 2022, 71(8): 086101 (in Chinese) doi: 10.7498/aps.71.20212025

    Duan Yajuan, Qiao Jichao. Dynamic relaxation characteristics and stress relaxation behavior of Pd-based metallic glass. Acta Physica Sinica, 2022, 71(8): 086101 (in Chinese) doi: 10.7498/aps.71.20212025
    [47]
    Knuyt G, Schepper LD, Stals LM. Calculation of elastic constants for an amorphous metal and the influence of relaxation. Journal of Physics F: Metal Physics, 1986, 16(12): 1989 doi: 10.1088/0305-4608/16/12/011
    [48]
    Pineda E. Theoretical approach to Poisson ratio behavior during structural changes in metallic glasses. Physical Review B, 2006, 73(10): 104109 doi: 10.1103/PhysRevB.73.104109
    [49]
    Bauwens-Crowet C, Bauwens JC. The mechanism of creep behaviour in glassy polymers. Journal of Materials Science, 1975, 10(10): 1779-1787 doi: 10.1007/BF00554940
    [50]
    Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977, 25(4): 407-415 doi: 10.1016/0001-6160(77)90232-2
    [51]
    Bletry M, Guyot P, Blandin JJ, et al. Free volume model: High-temperature deformation of a Zr-based bulk metallic glass. Acta Materialia, 2006, 54(5): 1257-1263 doi: 10.1016/j.actamat.2005.10.054
    [52]
    Bletry M, Guyot P, Bréchet Y, et al. Transient regimes during high-temperature deformation of a bulk metallic glass: A free volume approach. Acta Materialia, 2007, 55(18): 6331-6337 doi: 10.1016/j.actamat.2007.07.047
    [53]
    Wang YM, Zhang M, Liu L. Mechanical annealing in the homogeneous deformation of bulk metallic glass under elastostatic compression. Scripta Materialia, 2015, 102: 67-70 doi: 10.1016/j.scriptamat.2015.02.015
    [54]
    Peng HL, Li MZ, Wang WH. Stress-versus temperature-induced structural evolution in metallic glasses. Applied Physics Letters, 2013, 102(13): 131908 doi: 10.1063/1.4800531
    [55]
    Heggen M, Spaepen F, Feuerbacher M. Creation and annihilation of free volume during homogeneous flow of a metallic glass. Journal of Applied Physics, 2005, 97(3): 033506
    [56]
    Perez J. Homogeneous flow and anelastic/plastic deformation of metallic glasses. Acta Metallurgica, 1984, 32(12): 2163-2173 doi: 10.1016/0001-6160(84)90159-7
    [57]
    Li W, Zuo XF, Liu R, et al. Multi-scale defects activation in Gd18.33Tb18.33Dy18.34Co17.5Al27.5 high-entropy metallic glasses revealed by nanoindentation. International Journal of Plasticity, 2024, 174: 103893 doi: 10.1016/j.ijplas.2024.103893
    [58]
    周光全, 刘孝敏. 黏弹性理论. 合肥: 中国科学技术大学出版社, 1996
    [59]
    杨挺青. 黏弹性力学. 武汉: 华中理工大学出版社, 1990
    [60]
    Xu ZR, Qiao JC, Wang J, et al. Comprehensive insights into the thermal and mechanical effects of metallic glasses via creep. Journal of Materials Science & Technology, 2022, 99: 39-47
    [61]
    Lyu Z, Yuan C, Ke H, et al. Defects activation in CoFe-based metallic glasses during creep deformation. Journal of Materials Science & Technology, 2021, 69: 42-47
    [62]
    Taub AI, Spaepen F. Ideal elastic, anelastic and viscoelastic deformation of a metallic glass. Journal of Materials Science, 1981, 16(11): 3087-3092 doi: 10.1007/BF00540316
    [63]
    Ke HB, Zhang P, Sun BA, et al. Dissimilar nanoscaled structural heterogeneity in U-based metallic glasses revealed by nanoindentation. Journal of Alloys and Compounds, 2019, 788: 391-396 doi: 10.1016/j.jallcom.2019.02.256
    [64]
    Priezjev NV. Accelerated relaxation in disordered solids under cyclic loading with alternating shear orientation. Journal of Non-Crystalline Solids, 2019, 525: 119683 doi: 10.1016/j.jnoncrysol.2019.119683
    [65]
    Flores KM, Johnson WL, Dauskardt RH. Fracture and fatigue behavior of a Zr-Ti-Nb ductile phase reinforced bulk metallic glass matrix composite. Scripta Materialia, 2003, 49(12): 1181-1187 doi: 10.1016/j.scriptamat.2003.08.020
    [66]
    Jiao W, Wen P, Bai HY, et al. Transiently suppressed relaxations in metallic glass. Applied Physics Letters, 2013, 103: 161902 doi: 10.1063/1.4825364
    [67]
    Lemaître A, Caroli C. Rate-dependent avalanche size in athermally sheared amorphous solids. Physical Review Letters, 2009, 103(6): 065501 doi: 10.1103/PhysRevLett.103.065501
    [68]
    乔吉超, 张浪渟, 童钰等. 基于微观结构非均匀性的非晶合金力学行为. 力学进展, 2022, 52(1): 117-152 (Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechancial properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038

    Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechancial properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038
  • Related Articles

    [1]Zhang Jian, Hao Qi, Xing Guanghui, Qiao Jichao. PROBING ON MICROSTRUCTURAL HETEROGENEITY OF La-BASED METALLIC GLASS: BASED ON THE STRESS RELAXATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2616-2624. DOI: 10.6052/0459-1879-24-077
    [2]Hao Qi, Qiao Jichao. STRESS RELAXATION DYNAMICS FOR AMORPHOUS ALLOYS BASED ON THE EVOLUTION OF MICROSTRUCTURAL HETEROGENEITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3058-3067. DOI: 10.6052/0459-1879-22-255
    [3]Shen Tao, Zhang Chongfeng, Wang Weijun, Feng Wenbo, Qiu Huayong. DYNAMIC SIMULATION ANALYSIS OF CAPTURE AND BUFFER SYSTEM BASED ON CLAW-TYPE DOCKING MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1590-1598. DOI: 10.6052/0459-1879-20-108
    [4]Zhang Xiaoshun, Zhang Dingguo, Hong Jiazheny. RIGID-FLEXIBLE COUPLING DYNAMIC MODELING AND SIMULATION WITH THE LONGITUDINAL DEFORMATION INDUCED CURVATURE EFFECT FOR A ROTATING FLEXIBLE BEAM UNDER LARGE DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 692-701. DOI: 10.6052/0459-1879-15-385
    [5]Duan Wenjie Wang Qi Wang Tianshu. imulation research of a passive dynamic walker with round feet based on non-smooth method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 765-774. DOI: 10.6052/0459-1879-2011-4-lxxb2010-277
    [6]Xiaobo Li, Yuewu Liu, Hongzhi Sheng, Ruyong Feng. A model for the flow of emulsion in porous media with micro-heterogeneities[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 313-317. DOI: 10.6052/0459-1879-2009-3-2008-027
    [7]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
    [8]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
    [9]THE ESTABLISHMENT OF THE GENERAL DYNAMIC EQUATIONS OF TREE-STRUCTURE RIGID BODIES SYSTEM WITH BALL JOINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(1): 95-98. DOI: 10.6052/0459-1879-1990-1-1995-917

Catalog

    Article Metrics

    Article views (201) PDF downloads (46) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return