EI、Scopus 收录
中文核心期刊
Huang Bohua, Jiang Zichao, Wang Zhuolin, Luo Xuan, Zhang Yi, Yao Qinghe, Yang Gengchao. Vortex structure analysis of vortex ring collision process based on direct numerical simulation. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 2004-2014. DOI: 10.6052/0459-1879-24-006
Citation: Huang Bohua, Jiang Zichao, Wang Zhuolin, Luo Xuan, Zhang Yi, Yao Qinghe, Yang Gengchao. Vortex structure analysis of vortex ring collision process based on direct numerical simulation. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 2004-2014. DOI: 10.6052/0459-1879-24-006

VORTEX STRUCTURE ANALYSIS OF VORTEX RING COLLISION PROCESS BASED ON DIRECT NUMERICAL SIMULATION

  • Received Date: January 01, 2024
  • Accepted Date: April 09, 2024
  • Available Online: April 09, 2024
  • Published Date: April 10, 2024
  • Vortex ring collision involves intricate multi-level topological relationships of vortex structures and mechanisms of enstrophy transfer. A thorough investigation of this model contributes to the elucidation of the mechanisms involved in the interaction processes among vortex structures. Distinguishing itself from existing studies that typically focus on the transient evolution of small-scale secondary structures within vortex rings, this research employs direct numerical simulation utilizing an enhanced SIMPLE algorithm. It integrates the overall dynamic evolution with detailed analysis of vortex structure to investigate vortex ring collision models. Utilizing a high-resolution grid, we analyzed the secondary vortex structures spawned after vortex ring collisions at different Reynolds numbers. The study reveals that the vortex ring collision process is accompanied by complex topological changes in vortex structures, such as the deflection of high enstrophy regions and the elongation between vortex filaments. During collisions, the instability of the rings themselves leads to the formation of secondary vortex rings distributed according to azimuthal angles after local contacts. The secondary structures undergo a transition from non-existence to existence and from an approximately circular ring shape to a turbulent state with increasing Reynolds numbers in the flow field. Concerning the enstrophy profiles reflecting the overall flow field, an increase in Reynolds number generally results in a reduction of the initial moment of dissipation rate, an elevation in the peak associated with collision-induced uplift, and a shifting forward of the peak time corresponding to the elevation. Overall, variations in Reynolds number significantly influence the vortex flow intensity and evolution of vortex structures at various stages of vortex ring collision. This study demonstrates the deflection, reconnection, and turbulization features of vortex structure evolution based on direct numerical simulations. The partial regulation mechanism of Reynolds number on vortex ring collision is revealed, which is instructive for the study of the evolution mechanism of vortex systems in complex flows.
  • [1]
    向阳, 刘洪, 吴镇远. 涡环物理特征的研究. 空气动力学学报, 2014, 32: 159-165 (Xiang Yang, Liu Hong, Wu Zhenyuan. The investigation on physical features of vortex rings. ACTA Aerodynamica Sinica, 2014, 32 (2): 159-165 (in Chinese)

    Xiang Yang, Liu Hong, Wu Zhenyuan. The investigation on physical features of vortex rings. ACTA Aerodynamica Sinica, 2014, 32 (2): 159-165 (in Chinese)
    [2]
    吴立新, 是勋刚. 理想流体中定常自由涡环运动. 力学学报, 1993, 25(5): 529-536 (Wu Lixin, Shi Xunguan. Steady free vortex rings in an inviscid fluid. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(5): 529-536 (in Chinese)

    Wu Lixin, Shi Xunguan. Steady free vortex rings in an inviscid fluid. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(5): 529-536 (in Chinese)
    [3]
    胡建军, 朱晴, 王美达等. 近距离下射流冲击平板PIV实验研究. 力学学报, 2020, 52(5): 1350-1361 (Hu Jianjun, Zhu Qing, Wang Meida, et al. PIV measurement of close impinging jet on flat plate. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1350-1361 (in Chinese)

    Hu Jianjun, Zhu Qing, Wang Meida, et al. PIV measurement of close impinging jet on flat plate. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1350-1361 (in Chinese)
    [4]
    徐杨, 王晋军. 涡环垂直撞击壁面的研究进展. 中国科学: 技术科学, 2013, 56: 2447-2455 (Xu Yang, Wang Jinjun. Recent development of vortex ring impinging onto the wall. Sci China Tech Sci, 2013, 56: 2447-2455 (in Chinese) doi: 10.1007/s11431-013-5338-7

    Xu Yang, Wang Jinjun. Recent development of vortex ring impinging onto the wall. Sci China Tech Sci, 2013, 56: 2447-2455 (in Chinese) doi: 10.1007/s11431-013-5338-7
    [5]
    Hernández RH, Reyes T. Symmetrical collision of multiple vortex rings. Physics of Fluids, 2017, 29(10): 103604 doi: 10.1063/1.5004587
    [6]
    Tsai CY, Widnall SE. The stability of short waves on a straight vortex filament in a weak externally imposed strain field. Journal of Fluid Mechanics, 1976, 73(4): 721-733 doi: 10.1017/S0022112076001584
    [7]
    Lim TT, Nickels TB. Instability and reconnection in the head-on collision of two vortex rings. Nature, 1992, 357(6375): 225-227 doi: 10.1038/357225a0
    [8]
    Chu CC, Wang CT, Chang CC, et al. Head-on collision of two coaxial vortex rings: experiment and computation. Journal of Fluid Mechanics, 1995, 296: 39-71 doi: 10.1017/S0022112095002060
    [9]
    Mckeown R, Ostilla-Mónico R, Pumir A, et al. Cascade leading to the emergence of small structures in vortex ring collisions. Physical Review Fluids, 2018, 3(12): 124702 doi: 10.1103/PhysRevFluids.3.124702
    [10]
    Cheng M, Lou J, Lim TT. Numerical simulation of head-on collision of two coaxial vortex rings. Fluid Dynamics Research, 2018, 50(6): 065513 doi: 10.1088/1873-7005/aae54b
    [11]
    Guan H, Wei ZJ, Rasolkova ER, et al. Numerical simulations of two coaxial vortex rings head-on collision. Advances in Applied Mathematics and Mechanics, 2016, 8(4): 616-647 doi: 10.4208/aamm.2014.m829
    [12]
    Shariff K, Verzicco R, Orlandi P. A numerical study of three-dimensional vortex ring instabilities: viscous corrections and early nonlinear stage. Journal of Fluid Mechanics, 1994, 279: 351-375 doi: 10.1017/S0022112094003939
    [13]
    Crow SC. Stability theory for a pair of trailing vortices. AIAA Journal, 1970, 8(12): 2172-2179 doi: 10.2514/3.6083
    [14]
    Kerswell RR. Elliptical instability. Annual Review of Fluid Mechanics, 2002, 34(1): 83-113 doi: 10.1146/annurev.fluid.34.081701.171829
    [15]
    Moore DW, Saffman PG. The instability of a straight vortex filament in a strain field. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1975, 346: 413-425 doi: 10.1098/rspa.1975.0183
    [16]
    Van Hooft JA, Popinet S. A fourth-order accurate adaptive solver for incompressible flow problems. Journal of Computational Physics, 2022, 462: 111251 doi: 10.1016/j.jcp.2022.111251
    [17]
    Laporte F, Corjon A. Direct numerical simulations of the elliptic instability of a vortex pair. Physics of Fluids, 2000, 12(5): 1016-1031 doi: 10.1063/1.870357
    [18]
    Cheng M, Lou J, Lim TT. Collision and reconnection of viscous elliptic vortex rings. Physics of Fluids, 2019, 31(6): 067107 doi: 10.1063/1.5095674
    [19]
    Mishra A, Pumir A, Ostilla-Mónico R. Instability and disintegration of vortex rings during head-on collisions and wall interactions. Physical Review Fluids, 2021, 6(10): 104702 doi: 10.1103/PhysRevFluids.6.104702
    [20]
    Melander M, Hussain F. Cut-and-connect of two antiparallel vortex tubes//Proceedings of the Summer Program, 1988: 257-286
    [21]
    Yao J, Hussain F. Vortex reconnection and turbulence cascade. Annual Review of Fluid Mechanics, 2022, 54(1): 317-347 doi: 10.1146/annurev-fluid-030121-125143
    [22]
    Cheng M, Lou J, Lim TT. Vortex ring with swirl: A numerical study. Physics of Fluids, 2010, 22(9): 097101 doi: 10.1063/1.3478976
    [23]
    Hattori Y, Blanco-Rodríguez FJ, Le Dizès S. Numerical stability analysis of a vortex ring with swirl. Journal of Fluid Mechanics, 2019, 878: 5-36 doi: 10.1017/jfm.2019.621
    [24]
    Moffatt HK. Generalised vortex rings with and without swirl. Fluid Dynamics Research, 1988, 3(1-4): 22 doi: 10.1016/0169-5983(88)90040-8
    [25]
    Naitoh T, Okura N, Gotoh T, et al. On the evolution of vortex rings with swirl. Physics of Fluids, 2014, 26(6): 067101 doi: 10.1063/1.4882683
    [26]
    Kollmann W, Prieto MI. DNS of the collision of co-axial vortex rings. Computers & Fluids, 2013, 73: 47-64
    [27]
    Hussain F, Yao J. A physical model of turbulence cascade via vortex reconnection sequence and avalanche. Journal of Fluid Mechanics, 2020, 883: A51 doi: 10.1017/jfm.2019.905
    [28]
    Rica S. Self-similar vortex reconnection. Comptes Rendus Mécanique, 2019, 347(4): 365-375
    [29]
    Knio OM, Ghoniem AF. Numerical study of a three-dimensional vortex method. Journal of Computational Physics, 1990, 86(1): 75-106 doi: 10.1016/0021-9991(90)90092-F
    [30]
    Mansfield JR, Knio OM, Meneveau C. Dynamic LES of colliding vortex rings using a 3D vortex method. Journal of Computational Physics, 1999, 152(1): 305-345 doi: 10.1006/jcph.1999.6258
  • Related Articles

    [1]Xia Qianjin, Lian Long, Qu Jianxiong, Wang Yongsheng, Xue Yuan, Wang Qiang, Zhao Lihao. DIRECT NUMERICAL SIMULATION OF DRAG REDUCTION IN TURBULENT BOUNDARY LAYERS CONTROLLED BY INCLINED BLOWING AND SUCKING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2454-2467. DOI: 10.6052/0459-1879-21-223
    [2]Tong Fulin, Li Xin, Yu Changping, Li Xinliang. DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208. DOI: 10.6052/0459-1879-17-239
    [3]Zhu Haitao, Shan Peng. DIRECT NUMERICAL SIMULATION OF TURBINE CASCADE FLOW WITH HEAT TRANSFER EFFECTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 672-680. DOI: 10.6052/0459-1879-12-356
    [4]Liu Xuliang, Zhang Shuhai. DIRECT NUMERICAL SIMULATION OF THE INTERACTION OF 2D SHOCKWAVE AND SHEAR LAYER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 61-75. DOI: 10.6052/0459-1879-12-106
    [5]Li Hu, Zhang Shuhai. DIRECT NUMERICAL SIMULATION OF DECAYING COMPRESSIBLE ISOTROPIC TURBULENC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 673-686. DOI: 10.6052/0459-1879-11-353
    [6]Li Xinliang, Fu Dexun, Ma Yanwen. ESEC{ASSESSMENT OF THE COMPRESSIBLE TURBULENCE MODEL BY USING THE DNS DATA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 222-229. DOI: 10.6052/0459-1879-2012-2-20120204
    [7]Jianzhong Chang, Kang An, Hantao Liu. The study on the sedimentation of solid particle influenced by thermal convection using direct numerical simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 205-211. DOI: 10.6052/0459-1879-2010-2-2008-649
    [8]Wenbo Miao, Xiaoli Cheng, Qiang Wang. Direct numerical simulation of a compressible transitional mixing layer with combustion chemical reactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 114-120. DOI: 10.6052/0459-1879-2008-1-2007-296
    [9]THE DIRECT NUMERICAL SIMULATION OF THREE DIMENSIONAL MERGER FOR TWO PARALLEL VORTEX TUBES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(1): 1-8. DOI: 10.6052/0459-1879-1998-1-1995-091
    [10]DIRECT NUMERICAL SIMULATION OF COHERENT STRUCT-URES IN TWO-DIMENSIONAL MIXING LAYER[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(2): 136-144. DOI: 10.6052/0459-1879-1992-2-1995-721
  • Cited by

    Periodical cited type(7)

    1. 胡林慧,段明正,王帅,梁立红. 聚合物/金属复合材料界面性能的原子尺度表征. 复合材料学报. 2023(07): 4237-4245 .
    2. 宓思恩,刘小明,魏悦广. 一种从离散模拟到连续介质弹性模拟的过渡方法. 力学学报. 2021(11): 3080-3096 . 本站查看
    3. 董纪伟,陈培见,程红梅,罗宁,张桂民. MATLAB编程在层合板强度分析中的应用. 力学与实践. 2020(06): 806-810 .
    4. 董纪伟,陈培见,程红梅,罗宁,张桂民. MATLAB编程在层合板强度分析中的应用. 力学与实践. 2020(06): 806-810 .
    5. 张乐乐,刘响林,刘金喜. 压电纳米板中SH型导波的传播特性. 力学学报. 2019(02): 503-511 . 本站查看
    6. 魏进家,刘飞,刘冬洁. 减阻用表面活性剂溶液分子动力学模拟研究进展. 力学学报. 2019(04): 971-990 . 本站查看
    7. 李东波,刘秦龙,张鸿驰,雷蓬勃,赵冬. 基于分子动力学的氧化石墨烯拉伸断裂行为与力学性能研究. 力学学报. 2019(05): 1393-1402 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (257) PDF downloads (66) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return