Citation: | Zeng Hao, Wang Feng, Sun Chao. On the optical measurement techniques for droplet icing experiments. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(2): 316-334. DOI: 10.6052/0459-1879-23-643 |
[1] |
Lohse D, Zhang XH. Physicochemical hydrodynamics of droplets out of equilibrium. Nature Reviews Physics, 2020, 2(8): 426-443 doi: 10.1038/s42254-020-0199-z
|
[2] |
Zhao YP. Moving contact line problem: Advances and perspectives. Theoretical and Applied Mechanics Letters, 2014, 4(3): 034002 doi: 10.1063/2.1403402
|
[3] |
Snoeijer JH, Andreotti B. Moving contact lines: scales, regimes, and dynamical transitions. Annual Review of Fluid Mechanics, 2013, 45(1): 269-292 doi: 10.1146/annurev-fluid-011212-140734
|
[4] |
袁泉子, 沈文豪, 赵亚溥. 移动接触线的物理力学研究. 力学进展, 2016, 46(1): 201608 (Yuan Quanzi, Shen Wenhao, Zhao Yapu. Physical mechanics investigations of moving contact lines. Advances in Mechanics, 2016, 46(1): 201608 (in Chinese) doi: 10.6052/1000-0992-16-006
Yuan Quanzi, Shen Wenhao, Zhao Yapu. Physical mechanics investigations of moving contact lines. Advances in Mechanics, 2016, 46(1): 201608 (in Chinese) doi: 10.6052/1000-0992-16-006
|
[5] |
Cebeci R, Kafyeke F. Aircraft icing. Annual Review of Fluid Mechanics, 2003, 35(1): 11-21 doi: 10.1146/annurev.fluid.35.101101.161217
|
[6] |
Madi E, Pope K, Huang W, et al. A review of integrating ice detection and mitigation for wind turbine blades. Renewable and Sustainable Energy Reviews, 2019, 103: 269-281 doi: 10.1016/j.rser.2018.12.019
|
[7] |
Dehghani-Sanij AR, Dehghani SR, Naterer GF, et al. Marine icing phenomena on vessels and offshore structures: Prediction and analysis. Ocean Engineering, 2017, 143: 1-23 doi: 10.1016/j.oceaneng.2017.07.049
|
[8] |
Kavuri S, Karapetsas G, Sharma GS, et al. Freezing of sessile droplet and frost halo formation. Physical Review Fluids, 2023, 8: 124003 doi: 10.1103/PhysRevFluids.8.124003
|
[9] |
Zeng H, Wakata Y, Chao X, et al. On evaporation dynamics of an acoustically levitated multicomponent droplet: Evaporation-triggered phase transition and freezing. Journal of Colloid and Interface Science, 2023, 648: 736-744 doi: 10.1016/j.jcis.2023.06.012
|
[10] |
Chaudhary G, Li R. Freezing of water droplets on solid surfaces: An experimental and numerical study. Experimental Thermal and Fluid Science, 2014, 57: 86-93 doi: 10.1016/j.expthermflusci.2014.04.007
|
[11] |
Zhang X, Liu X, Wu X, et al. Simulation and experiment on supercooled sessile water droplet freezing with special attention to supercooling and volume expansion effects. International Journal of Heat and Mass Transfer, 2018, 127: 975-985
|
[12] |
Zeng H, Lyu SJ, Legendre D, et al. Influence of gravity on the freezing dynamics of drops on a solid surface. Physical Review Fluids, 2022, 7(10): 103605 doi: 10.1103/PhysRevFluids.7.103605
|
[13] |
Ghabache E, Josserand C, Séon T. Frozen impacted drop: From fragmentation to hierarchical crack patterns. Physical Review Letters, 2016, 117(7): 074501 doi: 10.1103/PhysRevLett.117.074501
|
[14] |
Lyu SJ, Zhu X, Legendre D, et al. Liquid encapsulation in a freezing sessile drop. Droplet, 2023, 2(4): e90 doi: 10.1002/dro2.90
|
[15] |
Boinovich L, Emelyanenko AM, Korolev VV, et al. Effect of wettability on sessile drop freezing: When superhydrophobicity stimulates an extreme freezing delay. Langmuir, 2014, 30(6): 1659-1668 doi: 10.1021/la403796g
|
[16] |
Chu F, Zhang X, Li S, et al. Bubble formation in freezing droplets. Physical Review Fluids, 2019, 4(7): 071601 doi: 10.1103/PhysRevFluids.4.071601
|
[17] |
Miao Y, Zhao Y, Gao M, et al. Characteristics of a freezing nanosuspension drop in two different schemes. Applied Physics Letters, 2022, 120(9): 091602 doi: 10.1063/5.0084094
|
[18] |
Singha SK, Das PK, Maiti B. Influence of salinity on the mechanism of surface icing: Implication to the disappearing freezing singularity. Langmuir, 2018, 34(30): 9064-9071 doi: 10.1021/acs.langmuir.8b00969
|
[19] |
Boulogne F, Salonen A. Drop freezing: Fine detection of contaminants by measuring the tip angle. Applied Physics Letters, 2020, 116(10): 103701 doi: 10.1063/1.5144071
|
[20] |
Marín AG, Enríquez OR, Brunet P, et al. Universality of tip singularity formation in freezing water drops. Physical Review Letters, 2014, 113(5): 054301 doi: 10.1103/PhysRevLett.113.054301
|
[21] |
Karlsson L, Lycksam H, Ljung AL, et al. Experimental study of the internal flow in freezing water droplets on a cold surface. Experiments in Fluids, 2019, 60(12): 182 doi: 10.1007/s00348-019-2823-1
|
[22] |
Stiti M, Labergue A, Hervy F, et al. Characterization of supercooled droplets in an icing wind tunnel using laser-induced fluorescence. Experiments in Fluids, 2021, 62(8): 169 doi: 10.1007/s00348-021-03210-x
|
[23] |
Wei A, Yang Z, Tang L, et al. Temperature measurements in the freezing supercooled water droplet by utilizing molecular tagging thermometry technique. Review of Scientific Instruments, 2022, 93(7): 074901 doi: 10.1063/5.0090429
|
[24] |
Huerre A, Monier A, Séon T, et al. Solidification of a rivulet: Shape and temperature fields. Journal of Fluid Mechanics, 2021, 914: A32 doi: 10.1017/jfm.2021.41
|
[25] |
Park MS, Golovin AA, Davis SH. The encapsulation of particles and bubbles by an advancing solidification front. Journal of Fluid Mechanics, 2006, 560: 415 doi: 10.1017/S0022112006000796
|
[26] |
Ding GY, Wells AJ, Zhong JQ. Solidification of binary aqueous solutions under periodic cooling. Part 1. Dynamics of mushy-layer growth. Journal of Fluid Mechanics, 2019, 870: 121-146
|
[27] |
Deville S, Maire E, Bernard-Granger G, et al. Metastable and unstable cellular solidification of colloidal suspensions. Nature Materials, 2009, 8(12): 966-972 doi: 10.1038/nmat2571
|
[28] |
Tyagi S, Monteux C, Deville S. Multiple objects interacting with a solidification front. Scientific Reports, 2021, 11(1): 3513 doi: 10.1038/s41598-021-82713-3
|
[29] |
Zhang H, Zhao Y, Fang W, et al. Active control of the freezing process of a ferrofluid droplet with magnetic fields. Applied Thermal Engineering, 2020, 176: 115444 doi: 10.1016/j.applthermaleng.2020.115444
|
[30] |
Kant P, Koldeweij RBJ, Harth K, et al. Fast-freezing kinetics inside a droplet impacting on a cold surface. Proceedings of the National Academy of Sciences, 2020, 117(6): 2788-2794 doi: 10.1073/pnas.1912406117
|
[31] |
Fang WZ, Zhu F, Zhu L, et al. Self-peeling of frozen water droplets upon impacting a cold surface. Communications Physics, 2022, 5(1): 51 doi: 10.1038/s42005-022-00827-0
|
[32] |
Wildeman S, Sterl S, Sun C, et al. Fast Dynamics of water droplets freezing from the outside in. Physical Review Letters, 2017, 118(8): 084101 doi: 10.1103/PhysRevLett.118.084101
|
[33] |
Versluis M. High-speed imaging in fluids. Experiments in Fluids, 2013, 54(2): 1458 doi: 10.1007/s00348-013-1458-x
|
[34] |
Thoroddsen ST, Etoh TG, Takehara K. High-speed imaging of drops and bubbles. Annual Review of Fluid Mechanics, 2008, 40(1): 257-285 doi: 10.1146/annurev.fluid.40.111406.102215
|
[35] |
Starostin A, Strelnikov V, Dombrovsky LA, et al. Three scenarios of freezing of liquid marbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128125 doi: 10.1016/j.colsurfa.2021.128125
|
[36] |
Jin P, Yan X, Hoque MJ, et al. Ultra-low ice-substrate adhesion and self-deicing during droplet impact freezing. Cell Reports Physical Science, 2022, 3(5): 100894 doi: 10.1016/j.xcrp.2022.100894
|
[37] |
Stairs RA. Changes of drop-shapes on freezing. Analytical Chemistry, 1971, 43(11): 1535-1536 doi: 10.1021/ac60305a036
|
[38] |
Nauenberg M. Theory and experiments on the ice-water front propagation in droplets freezing on a subzero surface. European Journal of Physics, 2016, 37(4): 045102 doi: 10.1088/0143-0807/37/4/045102
|
[39] |
Fang WZ, Zhang H, Zhang CY, et al. Freezing process of ferrofluid droplets: Numerical and scaling analyses. Physical Review Fluids, 2020, 5(5): 053601 doi: 10.1103/PhysRevFluids.5.053601
|
[40] |
Chu F, Gao S, Zhang X, et al. Droplet re-icing characteristics on a superhydrophobic surface. Applied Physics Letters, 2019, 115(7): 073703 doi: 10.1063/1.5109283
|
[41] |
Lyu SJ, Wang K, Zhang Z, et al. A hybrid VOF-IBM method for the simulation of freezing liquid films and freezing drops. Journal of Computational Physics, 2021, 432: 110160 doi: 10.1016/j.jcp.2021.110160
|
[42] |
Snoeijer JH, Brunet P. Pointy ice-drops: How water freezes into a singular shape. American Journal of Physics, 2012, 80(9): 764-771 doi: 10.1119/1.4726201
|
[43] |
Thiévenaz V, Josserand C, Séon T. Retraction and freezing of a water film on ice. Physical Review Fluids, 2020, 5(4): 041601 doi: 10.1103/PhysRevFluids.5.041601
|
[44] |
Meng Z, Zhu Y, Hao J, et al. Pancake-shaped freezing of a droplet impacting a supercooled surface: Evidence for a threshold temperature. Physics of Fluids, 2022, 34(8): 082115 doi: 10.1063/5.0102964
|
[45] |
Hu M, Wang F, Tao Q, et al. Frozen patterns of impacted droplets: From conical tips to toroidal shapes. Physical Review Fluids, 2020, 5(8): 081601 doi: 10.1103/PhysRevFluids.5.081601
|
[46] |
Jung S, Tiwari MK, Doan NV, et al. Mechanism of supercooled droplet freezing on surfaces. Nature Communications, 2012, 3(1): 615 doi: 10.1038/ncomms1630
|
[47] |
Campbell JM, Sandnes B, Flekkøy EG, et al. Dynamics of dendritic ice freezing in confinement. Crystal Growth & Design, 2022, 22(4): 2433-2440
|
[48] |
Huang C, Zhao Y, Gu T. Ice dendrite growth atop a frozen drop under natural convection conditions. Crystals, 2022, 12(3): 323 doi: 10.3390/cryst12030323
|
[49] |
Gurganus C, Kostinski AB, Shaw RA. Fast imaging of freezing drops: no preference for nucleation at the contact line. The Journal of Physical Chemistry Letters, 2011, 2(12): 1449-1454 doi: 10.1021/jz2004528
|
[50] |
Murray BJ, Carslaw KS, Field PR. Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles. Atmospheric Chemistry and Physics, 2021, 21(2): 665-679 doi: 10.5194/acp-21-665-2021
|
[51] |
Bauerecker S, Ulbig P, Buch V, et al. Monitoring ice nucleation in pure and salty water via high-speed imaging and computer simulations. The Journal of Physical Chemistry C, 2008, 112(20): 7631-7636 doi: 10.1021/jp711507f
|
[52] |
Graeber G, Dolder V, Schutzius TM, et al. Cascade freezing of supercooled water droplet collectives. ACS Nano, 2018, 12(11): 11274-11281 doi: 10.1021/acsnano.8b05921
|
[53] |
Lu M, Song M, Pang X, et al. Modeling study on sessile water droplet during freezing with the consideration of gravity, supercooling, and volume expansion effects. International Journal of Multiphase Flow, 2022, 147: 103909 doi: 10.1016/j.ijmultiphaseflow.2021.103909
|
[54] |
Yang S, Hou Y, Zhou DD, et al. Non-monotonic effect of ethanol concentration on the spreading of an ethanol-water binary droplet impact on a supercooled surface. International Journal of Thermal Sciences, 2023, 183: 107828 doi: 10.1016/j.ijthermalsci.2022.107828
|
[55] |
Dang Q, Song M, Zhang X, et al. Modelling study on freezing process of water droplet on inclined cold plate surface with droplet dynamic behavior considered. International Journal of Heat and Mass Transfer, 2022, 197: 123327 doi: 10.1016/j.ijheatmasstransfer.2022.123327
|
[56] |
Shi K, Duan X. Freezing delay of water droplets on metallic hydrophobic surfaces in a cold environment. Applied Thermal Engineering, 2022, 216: 119131 doi: 10.1016/j.applthermaleng.2022.119131
|
[57] |
Tourkine P, Le Merrer M, Quéré D. Delayed freezing on water repellent materials. Langmuir, 2009, 25(13): 7214-7216 doi: 10.1021/la900929u
|
[58] |
Huang W, Zhou X. Freezing of axisymmetric liquid bridges. Physical Review Fluids, 2020, 5(10): 103601 doi: 10.1103/PhysRevFluids.5.103601
|
[59] |
Jung S, Tiwari MK, Poulikakos D. Frost halos from supercooled water droplets. Proceedings of the National Academy of Sciences, 2012, 109(40): 16073-16078 doi: 10.1073/pnas.1206121109
|
[60] |
Kalita A, Mrozek-Mccourt M, Kaldawi TF, et al. Microstructure and crystal order during freezing of supercooled water drops. Nature, 2023, 620(7974): 557-561 doi: 10.1038/s41586-023-06283-2
|
[61] |
Russell LM. Sea-spray particles cause freezing in clouds. Nature, 2015, 525(7568): 194-195 doi: 10.1038/525194a
|
[62] |
Stiti M, Castanet G, Labergue A, et al. Icing of a droplet deposited onto a subcooled surface. International Journal of Heat and Mass Transfer, 2020, 159: 120116 doi: 10.1016/j.ijheatmasstransfer.2020.120116
|
[63] |
Volkov R, Strizhak P. Temperature recording of the ice–water system using planar laser induced fluorescence. Experimental Thermal and Fluid Science, 2022, 131: 110532 doi: 10.1016/j.expthermflusci.2021.110532
|
[64] |
Liu R, Li L, Xiong H, et al. Investigation on the morphology of freezing droplet based on image processing method//7th International Conference on Intelligent Computing and Signal Processing (ICSP). Xi’an: IEEE, 2022: 1717-1720
|
[65] |
Settles GS, Hargather MJ. A review of recent developments in schlieren and shadowgraph techniques. Measurement Science and Technology, 2017, 28(4): 042001 doi: 10.1088/1361-6501/aa5748
|
[66] |
Grivet R, Monier A, Huerre A, et al. Contact line catch up by growing ice crystals. Physical Review Letters, 2022, 128(25): 254501 doi: 10.1103/PhysRevLett.128.254501
|
[67] |
Wang F, Chen L, Li YQ, et al. Droplet impacting on a supercooled immiscible liquid pool. Physics of Fluids, 2023, 35: 081701 doi: 10.1063/5.0162449
|
[68] |
Schutzius TM, Jung S, Maitra T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature, 2015, 527(7576): 82-85 doi: 10.1038/nature15738
|
[69] |
Knop I, Bansmer SE, Hahn V, et al. Comparison of different droplet measurement techniques in the braunschweig icing wind tunnel. Atmospheric Measurement Techniques, 2021, 14(2): 1761-1781 doi: 10.5194/amt-14-1761-2021
|
[70] |
Rydblom S. Measuring water droplets to detect atmospheric icing. [PhD Thesis]. Sundsvall: Mid Sweden University, 2017
|
[71] |
Rydblom S, Thornberg B. Liquid water content and droplet sizing shadowgraph measuring system for wind turbine icing detection. IEEE Sensors Journal, 2016, 16(8): 2714-2725 doi: 10.1109/JSEN.2016.2518653
|
[72] |
Shen H, Han BB, Zhang LF. Research progress of the ice crystal icing in aero-engine. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 1-7
|
[73] |
Ahmadi SF, Nath S, Kingett CM, et al. How soap bubbles freeze. Nature Communications, 2019, 10(1): 2531 doi: 10.1038/s41467-019-10021-6
|
[74] |
Galeote B. Ice Crystal particle measurement using shadowgraph imaging techniques//AIAA Atmospheric and Space Environments Conference. Toronto, Ontario, Canada: American Institute of Aeronautics and Astronautics, 2010
|
[75] |
Clauss T, Kiselev A, Hartmann S, et al. Application of linear polarized light for the discrimination of frozen and liquid droplets in ice nucleation experiments. Atmospheric Measurement Techniques, 2013, 6(4): 1041-1052 doi: 10.5194/amt-6-1041-2013
|
[76] |
Garimella S, Kristensen TB, Ignatius K, et al. The SP ectrometer for ice nuclei (SPIN): An instrument to investigate ice nucleation. Atmospheric Measurement Techniques, 2016, 9(7): 2781-2795 doi: 10.5194/amt-9-2781-2016
|
[77] |
Zenker J, Collier KN, Xu G, et al. Using depolarization to quantify ice nucleating particle concentrations: A new method. Atmospheric Measurement Techniques, 2017, 10(12): 4639-4657 doi: 10.5194/amt-10-4639-2017
|
[78] |
Castillo JE, Huang Y, Pan Z, et al. Asymmetric solidification during droplet freezing in the presence of a neighboring droplet. International Journal of Heat and Mass Transfer, 2021, 171: 121134 doi: 10.1016/j.ijheatmasstransfer.2021.121134
|
[79] |
Kleinheins J, Kiselev A, Keinert A, et al. Thermal imaging of freezing drizzle droplets: pressure release events as a source of secondary ice particles. Journal of the Atmospheric Sciences, 2021, 78(5): 1703-1713
|
[80] |
Li X, Yu J, Hu D, et al. Freezing of nanofluid droplets on superhydrophobic surfaces. Langmuir, 2020, 36(43): 13034-13040 doi: 10.1021/acs.langmuir.0c02432
|
[81] |
Madi E, Pope K, Huang WM. Estimating the volume of frozen water droplets on a cold surface during the phase change with thermal image processing. Measurement, 2021, 183: 109907 doi: 10.1016/j.measurement.2021.109907
|
[82] |
Li FF, Liu J. Thermal infrared mapping of the freezing phase change activity of micro liquid droplet. Journal of Thermal Analysis and Calorimetry, 2010, 108: 155-162
|
[83] |
Wakata Y, Zhu N, Chen XL, et al. How roughness and thermal properties of a solid substrate determine the Leidenfrost temperature: Experiments and a model. Physical Review Fluids, 2023, 8: L061601 doi: 10.1103/PhysRevFluids.8.L061601
|
[84] |
Rees WG, James SP. Angular variation of the infrared emissivity of ice and water surfaces. International Journal of Remote Sensing, 1992, 13(15): 2873-2886 doi: 10.1080/01431169208904088
|
[85] |
Hori M, Aoki T, Tanikawa T, et al. In-situ measured spectral directional emissivity of snow and ice in the 8 ~ 14 μm atmospheric window. Remote Sensing of Environment, 2006, 100(4): 486-502 doi: 10.1016/j.rse.2005.11.001
|
[86] |
Marcellini M, Noirjean C, Dedovets D, et al. Time-lapse, in situ imaging of ice crystal growth using confocal microscopy. ACS Omega, 2016, 1(5): 1019-1026 doi: 10.1021/acsomega.6b00217
|
[87] |
Jin ZY, Jin SY, Yang ZG. Visualization of icing process of a water droplet impinging onto a frozen cold plate under free and forced convection. Journal of Visualization, 2013, 16: 13-17 doi: 10.1007/s12650-012-0154-x
|
[88] |
Elbaum M, Lipson SG, Dash JG. Optical study of surface melting on ice. Journal of Crystal Growth, 1993, 129: 491-505 doi: 10.1016/0022-0248(93)90483-D
|
[89] |
Dedovets D, Monteux C, Deville S. Five-dimensional imaging of freezing emulsions with solute effects. Science, 2018, 360(6386): 303-306 doi: 10.1126/science.aar4503
|
[90] |
Tyagi S, Monteux C, Deville S. Solute effects on the dynamics and deformation of emulsion droplets during freezing. Soft Matter, 2022, 18(21): 4178-4188 doi: 10.1039/D2SM00226D
|
[91] |
Gandee H, Zhou Y, Lee J, et al. Unique ice dendrite morphology on state-of-the-art oil-impregnated surfaces. Proceedings of the National Academy of Sciences, 2023, 120(1): e2214143120 doi: 10.1073/pnas.2214143120
|
[92] |
Seguy L, Protiere S, Huerre A. Role of geometry and adhesion in droplet freezing dynamics. Physical Review Fluids, 2023, 8(3): 033601 doi: 10.1103/PhysRevFluids.8.033601
|
[93] |
De Ruiter J, Soto D, Varanasi KK. Self-peeling of impacting droplets. Nature Physics, 2018, 14(1): 35-39 doi: 10.1038/nphys4252
|
[94] |
Lambley H, Graeber G, Vogt R, et al. Freezing-induced wetting transitions on superhydrophobic surfaces. Nature Physics, 2023, 19(5): 649-655 doi: 10.1038/s41567-023-01946-3
|
[95] |
Voulgaropoulos V, Kadivar M, Moghimi MA, et al. A combined experimental and computational study of phase-change dynamics and flow inside a sessile water droplet freezing due to interfacial heat transfer. International Journal of Heat and Mass Transfer, 2021, 180: 121803 doi: 10.1016/j.ijheatmasstransfer.2021.121803
|
[96] |
Cheng J, Soetjipto C, Hoffmann MR, et al. Confocal fluorescence microscopy of the morphology and composition of interstitial fluids in freezing electrolyte solutions. The Journal of Physical Chemistry Letters, 2010, 1(1): 374-378 doi: 10.1021/jz9000888
|
[97] |
Talbi M, Duperrier R, Delestre B, et al. Interferometric ice particle imaging in a wind tunnel. Optics, 2021, 2(4): 216-227 doi: 10.3390/opt2040020
|
[98] |
García-Magariño A, Sor S, Bardera R, et al. Interferometric laser imaging for droplet sizing method for long range measurements. Measurement, 2021, 168: 108418 doi: 10.1016/j.measurement.2020.108418
|
[99] |
Graeber G, Schutzius TM, Eghlidi H, et al. Spontaneous self-dislodging of freezing water droplets and the role of wettability. Proceedings of the National Academy of Sciences, 2017, 114(42): 11040-11045 doi: 10.1073/pnas.1705952114
|
[100] |
Shirota M, Van Limbeek MAJ, Lohse D, et al. Measuring thin films using quantitative frustrated total internal reflection (FTIR). The European Physical Journal E, 2017, 40(5): 54 doi: 10.1140/epje/i2017-11542-4
|
[101] |
Shirota M, Van Limbeek MJ, Sun C, et al. Dynamic leidenfrost effect: relevant time and length scales. Physical Review Letters, 2016, 116(6): 064501 doi: 10.1103/PhysRevLett.116.064501
|
[102] |
Malley PPA, Chakraborty S, Kahan TF. Physical characterization of frozen saltwater solutions using raman microscopy. ACS Earth and Space Chemistry, 2018, 2(7): 702-710 doi: 10.1021/acsearthspacechem.8b00045
|
[103] |
Zhan T, Niu W, Cui M, et al. A study on the relationship between the crystallization characteristics of quenched droplets and the effect of cell cryopreservation with Raman spectroscopy. The Analyst, 2023, 148(14): 3312-3320 doi: 10.1039/D3AN00652B
|
[104] |
Rubinstein SM, Cohen G, Fineberg J. Detachment fronts and the onset of dynamic friction. Nature, 2004, 430(7003): 1005-1009 doi: 10.1038/nature02830
|
[105] |
Kolinski JM, Rubinstein SM, Mandre S, et al. Skating on a film of air: drops impacting on a surface. Physical Review Letters, 2012, 108(7): 074503 doi: 10.1103/PhysRevLett.108.074503
|
[106] |
Kolinski JM, Mahadevan L, Rubinstein SM. Drops can bounce from perfectly hydrophilic surfaces. Europhysics Letters, 2014, 108(2): 24001 doi: 10.1209/0295-5075/108/24001
|
[107] |
Koldeweij RBJ, Kant P, Harth K, et al. Initial solidification dynamics of spreading droplets. Physical Review Fluids, 2021, 6(12): L121601 doi: 10.1103/PhysRevFluids.6.L121601
|
[108] |
Kant P, Müller-Groeling H, Lohse D. Pattern formation during the impact of a partially frozen binary droplet on a cold surface. Physical Review Letters, 2020, 125(18): 184501 doi: 10.1103/PhysRevLett.125.184501
|
[109] |
Miao J, Ishikawa T, Robinson IK, et al. Beyond crystallography: Diffractive imaging using coherent X-ray light sources. Science, 2015, 348(6234): 530-535 doi: 10.1126/science.aaa1394
|
[110] |
Millot M, Coppari F, Rygg JR, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature, 2019, 569(7755): 251-255 doi: 10.1038/s41586-019-1114-6
|
[111] |
Feng S, Chen Q, Gu G, et al. Fringe pattern analysis using deep learning. Advanced Photonics, 2019, 1(2): 025001
|
[112] |
Zuo C, Qian J, Feng S, et al. Deep learning in optical metrology: a review. Light: Science & Applications, 2022, 11(1): 39
|
[113] |
张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, 2021, 70(16): 168702 (Zhang Yao, Zhang Yunbo, Chen Li. Deep-learning-assisted micro impurity detection on an optical surface. Acta Physica Sinica, 2021, 70(16): 168702 (in Chinese) doi: 10.7498/aps.70.20210403
Zhang Yao, Zhang Yunbo, Chen Li. Deep-learning-assisted micro impurity detection on an optical surface. Acta Physica Sinica, 2021, 70(16): 168702 (in Chinese) doi: 10.7498/aps.70.20210403
|
[114] |
李冠楠, 石俊凯, 陈晓梅等. 基于机器学习的过焦扫描显微测量方法研究. 中国光学, 2022, 15(4): 703-711 (Li Guannan, Shi Junkai, Chen Xiaomei, et al. Through-focus scanning optical microscopy measurement based on machine learnin. Chinese Optics, 2022, 15(4): 703-711 (in Chinese) doi: 10.37188/CO.2022-0009
Li Guannan, Shi Junkai, Chen Xiaomei, et al. Through-focus scanning optical microscopy measurement based on machine learnin. Chinese Optics, 2022, 15(4): 703-711 (in Chinese) doi: 10.37188/CO.2022-0009
|
[115] |
周宏强, 黄玲玲, 王涌天. 深度学习算法及其在光学的应用. 红外与激光工程, 2019, 48(12): 1226004 (Zhou Hongqiang, Huang Lingling, Wang Yongtian. Deep learning algorithm and its application in optics. Infrared and Laser Engineering, 2019, 48(12): 1226004 (in Chinese) doi: 10.3788/IRLA201948.1226004
Zhou Hongqiang, Huang Lingling, Wang Yongtian. Deep learning algorithm and its application in optics. Infrared and Laser Engineering, 2019, 48(12): 1226004 (in Chinese) doi: 10.3788/IRLA201948.1226004
|
[1] | Wang Haodong, Sang Weimin, Shi Miaoxin, An Bo, Pei Runan. NUMERICAL SIMULATION OF ICE ACCRETION CHARACTERISTICS ON A TYPICAL SWEPT WING CONFIGURATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(4): 895-915. DOI: 10.6052/0459-1879-24-213 |
[2] | Hou Likai, Fan Xu, Jin Yuzhuo, Liu Mingyang, Bao Fubing. RESEARCH PROGRESS OF LIQUID MICRO-FLOW MEASUREMENT TECHNIQUES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1573-1584. DOI: 10.6052/0459-1879-23-500 |
[3] | Yang Chao, He Jianwu, Zhang Chu, Kang Qi, Duan Li. MICRO IMPULSE MEASUREMENT METHOD AND EXPERIMENTAL RESEARCH BASED ON TORSION PENDULUM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 669-677. DOI: 10.6052/0459-1879-21-191 |
[4] | Ye Zhijun, Duan Li, Kang Qi. MECHANISTIC STUDY OF LASER-DRIVEN DROPLET MIGRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 316-325. DOI: 10.6052/0459-1879-21-522 |
[5] | Cui Wen, BaoYin Hexi, Li Junfeng. RESEARCH ON OPTICAL AUTONOMOUS NAVIGATION FOR MARS EXPLORATION BASED ON ASTEROIDS' LIGHT-OF-VIEW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1075-1078. DOI: 10.6052/0459-1879-12-071 |
[6] | An algorithm in piv measurement of wind-sand two-phase flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 302-308. DOI: 10.6052/0459-1879-2006-3-2004-425 |
[7] | MEASURING TEMPERATURE FIELD WITH THREE-STEP PHASE-SHIFTING[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(2): 253-256. DOI: 10.6052/0459-1879-1995-2-1995-431 |
[8] | MEASUREMENTS OF VISCOSITY OF A LATTICE GAS USING A PROBABILITY MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 109-113. DOI: 10.6052/0459-1879-1995-S-1995-511 |
[9] | APPLICATION OF MOIRE INTERFEROMETRY TO TECHNOLOGICAL STRESS DISTRIBUTION MEASUREMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 485-491. DOI: 10.6052/0459-1879-1993-4-1995-669 |