Citation: | Wang Li, Nan Yakun, Xu Shuo, Cao Yunxing, Tian Lin, Zhang Junsheng, Shi Bin. The constitutive relationship between stress disturbances and hydraulic fracturing volume openings and effects controlling. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 2150-2163. DOI: 10.6052/0459-1879-23-631 |
[1] |
王利, 孟兵兵, 曹运兴等. 水力压裂体积张开度模型. 岩石力学与工程学报, 2020, 39(5): 887-900 (Wang Li, Meng Bingbing, Cao Yunxing, et al. A volumetric opening model of hydraulic fracturing. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(5): 887-900 (in Chinese)
Wang Li, Meng Bingbing, Cao Yunxing, et al. A volumetric opening model of hydraulic fracturing. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(5): 887-900 (in Chinese)
|
[2] |
陈勉, 葛洪魁, 赵金洲等. 页岩油气高效开发的关键基础理论与挑战. 石油钻探技术, 2015, 43(5): 7-14 (Chen Mian, Ge Hongkui, Zhao Jinzhou, et al. The key fundamentals for the efficient exploitation of shale oil and gas and its related challenges. Chinese Journal of Petroleum Drilling Techniques, 2015, 43(5): 7-14 (in Chinese) doi: 10.11911/syztjs.201505002
Chen Mian, Ge Hongkui, Zhao Jinzhou, et al. The key fundamentals for the efficient exploitation of shale oil and gas and its related challenges. Chinese Journal of Petroleum Drilling Techniques, 2015, 43(5): 7-14 (in Chinese) doi: 10.11911/syztjs.201505002
|
[3] |
庄茁, 柳占立, 王涛等. 页岩水力压裂的关键力学问题. 科学通报, 2016, 61(1): 72-81 (Zhuang Zhu, Liu Zhanli, Wang Tao, et al. The key mechanical problems on hydraulic fracture in shale. Chinese Science Bulletin, 2016, 61: 72-81 (in Chinese)
Zhuang Zhu, Liu Zhanli, Wang Tao, et al. The key mechanical problems on hydraulic fracture in shale. Chinese Science Bulletin, 2016, 61: 72-81 (in Chinese)
|
[4] |
陈勉, 金衍, 卢运虎. 页岩气开发: 岩石力学的机遇与挑战. 中国科学: 物理学 力学 天文学, 2017, 47(11): 114601 (Chen Mian, Jin Yan, Lu Yunhu. Shale gas development: Opportunities and challenges for rock mechanics. Chinese Journal of Scientia Sinica : Physica, Mechanica & Astronomica, 2017, 47(11): 114601 (in Chinese)
Chen Mian, Jin Yan, Lu Yunhu. Shale gas development: Opportunities and challenges for rock mechanics. Chinese Journal of Scientia Sinica: Physica, Mechanica & Astronomica, 2017, 47(11): 114601 (in Chinese)
|
[5] |
柳占立, 庄茁, 孟庆国等. 页岩气高效开采的力学问题与挑战. 力学学报, 2017, 49(3): 507-516 (Liu Zhanli, Zhuang Zhuo, Meng Qingguo, et al. Problems and challenges of mechanics in shale gas efficient exploitation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516 (in Chinese) doi: 10.6052/0459-1879-16-399
Liu Zhanli, Zhuang Zhuo, Meng Qingguo, et al. Problems and challenges of mechanics in shale gas efficient exploitation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516 (in Chinese) doi: 10.6052/0459-1879-16-399
|
[6] |
刘曰武, 高大鹏, 李奇等. 页岩气开采中的若干力学前沿问题. 力学进展, 2019, 49: 201901 (Liu Yuewu, Gao Dapeng, Li Qi, et al. Mechanical frontiers in shale-gas development. Chinese Journal of Advances in Mechanics, 2019, 49: 201901 (in Chinese) doi: 10.6052/1000-0992-17-020
Liu Yuewu, Gao Dapeng, Li Qi, et al. Mechanical frontiers in shale-gas development. Chinese Journal of Advances in Mechanics, 2019, 49: 201901 (in Chinese) doi: 10.6052/1000-0992-17-020
|
[7] |
Taghichian A, Zaman M, Devegowda D. Stress shadow size and aperture of hydraulic fractures in unconventional shale. Journal of Petroleum Science and Engineering, 2014, 124: 209-221 doi: 10.1016/j.petrol.2014.09.034
|
[8] |
Yoon JS, Zimmerman G, Zang A. Numerical investigation on stress shadowing in fluid injection-induced fracture propagation in naturally fractures geothermal reservoirs. Rock Mechanics and Rock Engineering, 2015, 48: 1439-1454 doi: 10.1007/s00603-014-0695-5
|
[9] |
Taghichian A, Hashemal H, Zaman M, et al. Geomechanical optimization of hydraulic fracturing in unconventional reservoirs: a semi-analytical approach. International Journal of Fracture, 2018, 213: 107-138 doi: 10.1007/s10704-018-0309-4
|
[10] |
Han W, Cui Z, Zhang JY. Fracture path interaction of two adjacent perforations subjected to different rate increments. Computers and Geotechnics, 2020, 122: 103500-103512 doi: 10.1016/j.compgeo.2020.103500
|
[11] |
Liu X, Rasouli V, Guo T, et al. Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling. Engineering Fracture Mechanics, 2020, 238: 107278-107294 doi: 10.1016/j.engfracmech.2020.107278
|
[12] |
Lee S, Min B, Wheeler MF. Optimal design of hydraulic fracturing in porous media using the phase field model coupled with genetic algorithm. Computational Geosciences, 2018, 22: 833-849 doi: 10.1007/s10596-018-9728-6
|
[13] |
Cleary MP. Analysis of mechanism and procedures for producing favourable shapes of hydraulic fractures//Proc. 55th Annl Fall Meeting, SPE-AIME. Dallas, 1980: 9260
|
[14] |
Detournay E, Cheng AHD, Roegiers JC, et al. Poroelasticity considerations in in-situ stress determination by hydraulic fracturing. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(6): 507-513
|
[15] |
Boone TJ, Ingraffea AR, Roegiers JC. Simulation of hydraulic fracture propagation in poroelastic rock with application to stress measurement techniques. International Journal of Rock Mechanics Mining Science & Geomechanics Abstracts, 1991, 28(1): 1-14
|
[16] |
Detournay E, Cheng AHD. A poroelastic PKN hydraulic fracture model based on an explicit moving mesh algorithm. Journal of Energy Resource Technology, 1990, 112: 224-231 doi: 10.1115/1.2905762
|
[17] |
Kovalyshen Y. Fluid-driven fracture in poroelastic medium. [PhD Thesis]. University of Minnesota, 2010
|
[18] |
Baykin AN. The range of influence of the poroelastic effects in terms of dimensionless complexes for the radial hydraulic fracturing model. International Journal of Rock Mechanics and Mining Sciences, 2020, 128: 104240 doi: 10.1016/j.ijrmms.2020.104240
|
[19] |
Dontsov EV. An efficient computation of leak-off induced poroelastic stress for a hydraulic fracture. Journal of the Mechanics and Physics of Solids, 2021, 147: 1-18
|
[20] |
Adachi J, Siebrits E, Peirce A, et al. Computer simulation of hydraulic fractures. International Journal of Rock Mechanics & Mining Sciences, 2007, 44: 739-757
|
[21] |
Chen ZR. Finite element modelling of viscosity-dominated hydraulic fractures. Journal of Petroleum Science and Engineering, 2012, 88-89: 136-144 doi: 10.1016/j.petrol.2011.12.021
|
[22] |
曾庆磊, 庄茁, 柳占立等. 页岩水力压裂中多簇裂缝扩展的全耦合模拟. 计算力学学报, 2016, 33(4): 643-649 (Zeng Qinglei, Zhuang Zhuo, Liu Zhanli, et al. Fully coupled simulation of multi-cluster fracture propagation in shale hydraulic fracturing. Chinese Journal of Computational Mechanics, 2016, 33(4): 643-649 (in Chinese) doi: 10.7511/jslx201604034
Zeng Qinglei, Zhuang Zhuo, Liu Zhanli, et al. Fully coupled simulation of multi-cluster fracture propagation in shale hydraulic fracturing. Chinese Journal of Computational Mechanics, 2016, 33(4): 643-649 (in Chinese) doi: 10.7511/jslx201604034
|
[23] |
Salimzadeh S, Paluszny A, Zimmerman RW. Three-dimensional poroelastic effects during hydraulic fracturing in permeable rocks. International Journal of Solids and Structure, 2017, 108: 153-163 doi: 10.1016/j.ijsolstr.2016.12.008
|
[24] |
Zhao Q, Lisjak A, Mahabadi O, et al. Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(5): 1-8
|
[25] |
Zhang FS, Damjanac B, Maxwell S. Investigating hydraulic fracturing complexity in naturally fractured rock mass using fully coupled numerical modeling. Rock Mechanics and Rock Engineering, 2019, 52: 5137-5160 doi: 10.1007/s00603-019-01851-3
|
[26] |
Munjiza A, Andrews KRF, White JK. Combined single and smeared crack model in combined finite-discrete element analysis. International Journal for Numerical Methods in Engineering, 1999, 44(1): 41-57 doi: 10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A
|
[27] |
Grassl P, Fathy C, Gallipoli D, et al. On a 2D hydro-mechanical lattice approach for modelling hydraulic fracture. Journal of the Mechanics and Physics of Solids, 2015, 75: 104-118 doi: 10.1016/j.jmps.2014.11.011
|
[28] |
Damjanac B, Detournay C, Cundall PA. Application of particle and lattice codes to simulation of hydraulic fracturing. Computational Particle Mechanics, 2016, 3: 249-261 doi: 10.1007/s40571-015-0085-0
|
[29] |
Wang L, Xu HZ, Cao YX, et al. A poromechanical model of hydraulic fracturing volumetric opening. Engineering Fracture Mechanics, 2020, 235: 107172 doi: 10.1016/j.engfracmech.2020.107172
|
[30] |
Zimmerman RW. Coupling in poroelasticity and thermoelasticity. International Journal of Rock Mechanics and Mining Sciences, 2000, 37: 79-87 doi: 10.1016/S1365-1609(99)00094-5
|
[31] |
Garagash DI, Detournay E. Plane-strain propagation of a fluid-driven fracture: small toughness solution. Journal of Applied Mechanics, Transactions ASME, 2007, 72(6): 183-192
|
[32] |
Bunger AP, Detournay E, Garagash DI. Toughness-dominated hydraulic fracture with leak-off. International Journal of Fracture, 2005, 134: 175-190 doi: 10.1007/s10704-005-0154-0
|
[33] |
Adachi JI, Detournay E. Plane strain propagation of a hydraulic fracture in a permeable rock. Engineering Fracture Mechanics, 2008, 75: 4666-4694 doi: 10.1016/j.engfracmech.2008.04.006
|
[34] |
Hu J, Garagash DI. Plane-strain propagation of a fluid-driven crack in a permeable rock with fracture toughness. Journal of Engineering Mechanics, 2010, 136(9): 1152-1168 doi: 10.1061/(ASCE)EM.1943-7889.0000169
|
[35] |
王利, 郭小辉, 曹运兴等. 基于RVE尺度的水力压裂应力扰动模型. 煤炭学报, 2023, 48(S1): 82-95 (Wang Li, Guo Xiaohui, Cao Yunxing, et al. Modelling of stress disturbance due to hydraulic fracturing on RVE. Chinese Journal of China Coal Society, 2023, 48(S1): 82-95 (in Chinese)
Wang Li, Guo Xiaohui, Cao Yunxing, et al. Modelling of stress disturbance due to hydraulic fracturing on RVE. Chinese Journal of China Coal Society, 2023, 48(S1): 82-95 (in Chinese)
|
[36] |
罗攀, 孙晓, 贺沛等. CO2与清水的压裂特征对比. 大庆石油地质与开发, 2023, 42(4): 90-98 (Luo Pan, Sun Xiao, He Pei, et al. Fracturing characteristics comparison of CO2 and fresh water. Chinese Journal of Petroleum Geology & Oilfield Development in Daqing, 2023, 42(4): 90-98 (in Chinese)
Luo Pan, Sun Xiao, He Pei, et al. Fracturing characteristics comparison of CO2 and fresh water. Chinese Journal of Petroleum Geology & Oilfield Development in Daqing, 2023, 42(4): 90-98 (in Chinese)
|
[37] |
王香增, 孙晓, 罗攀等. 非常规油气CO2压裂技术进展及应用实践. 岩性油气藏, 2019, 31(2): 1-7 (Wang Xiangzeng, Sun Xiao, Luo Pan, et al. Progress and application of CO2 fracturing technology for unconventional oil and gas. Chinese Journal of Lithologic Reservoirs, 2019, 31(2): 1-7 (in Chinese) doi: 10.12108/yxyqc.20190201
Wang Xiangzeng, Sun Xiao, Luo Pan, et al. Progress and application of CO2 fracturing technology for unconventional oil and gas. Chinese Journal of Lithologic Reservoirs, 2019, 31(2): 1-7 (in Chinese) doi: 10.12108/yxyqc.20190201
|
[38] |
丁勇, 马新星, 叶亮等. CO2破岩机理及压裂工艺技术研究. 岩性油气藏, 2018, 30(6): 151-159 (Ding Yong, Ma Xinxing, Ye Liang, et al. Rock breaking mechanism of CO2 and fracturing technology. Chinese Journal of Lithologic Reservoirs, 2018, 30(6): 151-159 (in Chinese) doi: 10.12108/yxyqc.20180619
Ding Yong, Ma Xinxing, Ye Liang, et al. Rock breaking mechanism of CO2 and fracturing technology. Chinese Journal of Lithologic Reservoirs, 2018, 30(6): 151-159 (in Chinese) doi: 10.12108/yxyqc.20180619
|
[39] |
章星, 杨胜来, 章玲等. 普通稠油开发水驱油转N2驱油室内实验研究. 断块油气田, 2012, 19(S1): 61-63 (Zhang Xing, Yang Shenglai, Zhang Ling, et al. Laboratory study on N2 flooding after waterflooding for ordinary heavy oil development. Chinese Journal of Fault Block Oil & Gas Field, 2012, 19(S1): 61-63 (in Chinese) doi: 10.6056/dkyqt2012z1016
Zhang Xing, Yang Shenglai, Zhang Ling, et al. Laboratory study on N2 flooding after waterflooding for ordinary heavy oil development. Chinese Journal of Fault Block Oil & Gas Field, 2012, 19(S1): 61-63 (in Chinese) doi: 10.6056/dkyqt2012z1016
|
[1] | Lü Yang, Fang Hongbin, Xu Jian, Ma Jianmin, Wang Qining, Zhang Xiaoxu. DYNAMIC MODELING AND ANALYSIS OF THE LOWER LIMB PROSTHESIS WITH FOUR-BAR LINKAGE PROSTHETIC KNEE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1157-1173. DOI: 10.6052/0459-1879-20-048 |
[2] | Jiang Chao, Liu Ningyu, Ni Bingyu, Han Xu. GIVING DYNAMIC RESPONSE BOUNDS UNDER UNCERTAIN EXCITATIONS-A NON-RANDOM VIBRATION ANALYSIS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 447-463. DOI: 10.6052/0459-1879-15-244 |
[3] | Du Chaofan, Zhang Dingguo. NODE-BASED SMOOTHED POINT INTERPOLATION METHOD: A NEW METHOD FOR COMPUTING LOWER BOUND OF NATURAL FREQUENCY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 839-847. DOI: 10.6052/0459-1879-15-146 |
[4] | Chen Denghong, Du Chengbin. DYNAMIC ANALYSIS OF BOUNDED DOMAINS BY SBFE AND THE IMPROVED CONTINUED-FRACTION EXPANSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 297-301. DOI: 10.6052/0459-1879-12-198 |
[5] | Li Chunguang, Zhu Yufei, Liu Feng, Deng Qin, Zheng Hong. A NEW LINEARIZATION METHOD OF MOHR-COULOMB YIELD SURFACE FOR LOWER BOUND PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 245-250. DOI: 10.6052/0459-1879-12-187 |
[6] | Gao Taiyuan, Cui Kai, Hu Shouchao, Wang Xiuping. MULTI-OBJECTIVE OPTIMIZATION AND AERODYNAMIC PERFORMANCE ANALYSIS OF THE UPPER SURFACE FOR HYPERSONIC VEHICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 193-201. DOI: 10.6052/0459-1879-12-227 |
[7] | Guanjun Zhang Libo Cao Fengjiao Guan Guangyong Sun Yang King Hay. Development and validation of fe models for long bones of lower limb in vehicle-to-pedestrian crashes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 939-947. DOI: 10.6052/0459-1879-2011-5-lxxb2010-342 |
[8] | Shenshen Chen, Yinghua Liu, Zhangzhi Cen. Lower bound limit analysis by using the element-free galerkin method with orthogonal basis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 633-640. DOI: 10.6052/0459-1879-2007-5-2006-567 |
[9] | A THEOREM OF UPPER AND LOWER BOUNDS ON EIGENVXLUES FOR STRUCTURES WITH BOUNDED TRIMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 466-474. DOI: 10.6052/0459-1879-1999-4-1995-055 |
[10] | BOUNDING PROPERTIES OF THE EIGENVALUES PROVIDED BY A QUADRATIC EIGEN-MATRIX FORMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(3): 326-335. DOI: 10.6052/0459-1879-1995-3-1995-438 |
1. |
石玉红,傅鸿飞,徐卫秀,杨帆. 大直径薄壁结构强度变差系数研究现状与展望. 强度与环境. 2024(01): 1-12 .
![]() | |
2. |
任炯,王刚. 一种在网格内部捕捉间断的Walsh函数有限体积方法. 力学学报. 2021(03): 773-788 .
![]() | |
3. |
魏彤辉,孟广伟,李锋,丛颖波. 基于降维算法和Chebyshev多项式的结构区间分析. 华中科技大学学报(自然科学版). 2021(08): 14-19 .
![]() |