EI、Scopus 收录
中文核心期刊
Qi Xiaojing, Du Yahui, Zeng Weizhen, Li Xuejin. Advances in rheological behavior of blood cells and stem cells using microfluidics. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1271-1283. DOI: 10.6052/0459-1879-23-604
Citation: Qi Xiaojing, Du Yahui, Zeng Weizhen, Li Xuejin. Advances in rheological behavior of blood cells and stem cells using microfluidics. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1271-1283. DOI: 10.6052/0459-1879-23-604

ADVANCES IN RHEOLOGICAL BEHAVIOR OF BLOOD CELLS AND STEM CELLS USING MICROFLUIDICS

  • Received Date: December 14, 2023
  • Accepted Date: February 25, 2024
  • Available Online: February 25, 2024
  • Published Date: February 26, 2024
  • Microfluidics, which serves as a micro total analysis system, offers various advantages such as precise flow control, low sample requirements, and integratability. It has been widely applied in the fields of biomedicine and environmental science. The flexible design of microfluidic channel structures enables the simulation of complex vascular microenvironments under physiological and pathological conditions. By integrating super-resolution microscopic imaging technology, researchers can observe and analyze dynamic changes in cells at the microscale in real time. Microfluidic chip systems have facilitated significant advances in the study of cell morphological and mechanical properties. This article focuses on the application and progress of microfluidic chip technology and relevant numerical simulation technology to the rheological behavior of red blood cells (RBCs) and white blood cells (WBCs) as well as stem cells. It first introduces the use of microfluidic chips and numerical simulations in the study of RBC deformation. It then discusses the application of microfluidic chip systems and related numerical simulations in WBC margination. Subsequently, it summarizes the application of microfluidic chip systems and related numerical simulations in stem cell migration and directed differentiation. Finally, it provides a prospectus on the challenges and development trends of microfluidic technology and numerical simulation technology in the study of blood cell and stem cell rheology.
  • [1]
    孙薇, 陆敏, 李立等. 微流控芯片技术应用进展. 中国国境卫生检疫杂志, 2019, 42(3): 221-224 (Sun Wei, Lu Min, Li Li, et al. Application progress on microfluidic chip technology. Chinese Frontier Health Quarantine, 2019, 42(3): 221-224 (in Chinese)

    Sun Wei, Lu Min, Li Li, et al. Application progress on microfluidic chip technology. Chinese Frontier Health Quarantine, 2019, 42(3): 221-224 (in Chinese)
    [2]
    Chen Y, Guo KF, Jiang L, et al. Microfluidic deformability cytometry: A review. Talanta, 2023, 251: 123815 doi: 10.1016/j.talanta.2022.123815
    [3]
    Ayuso JM, Virumbrales-Muñoz M, Lang JM, et al. A role for microfluidic systems in precision medicine. Nature Communications, 2022, 13(1): 1-12
    [4]
    戚晓菁, 李学进. 微流控芯片技术在血细胞变形和流动性分析研究中的应用进展. 实验流体力学, 2020, 34 (2): 1-10 (Qi Xiaojing, Li Xuejin. Research progress on mechanical and flow properties of blood cells in microcirculation using microfluidic devices. Journal of Experiments in Fluid Mechanics, 2020, 34 (2): 1-10 (in Chinese)

    Qi Xiaojing, Li Xuejin. Research progress on mechanical and flow properties of blood cells in microcirculation using microfluidic devices. Journal of Experiments in Fluid Mechanics, 2020, 34 (2): 1-10 (in Chinese)
    [5]
    Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature, 2014, 507(7491): 181-189 doi: 10.1038/nature13118
    [6]
    McIntyre D, Lashkaripour A, Fordyce P, et al. Machine learning for microfluidic design and control. Lab on a Chip, 2022, 22(16): 2925-2937 doi: 10.1039/D2LC00254J
    [7]
    Chen HX, Guo JH, Bian FK, et al. Microfluidic technologies for cell deformability cytometry. Smart Medicine, 2022, 1(1): 1-12
    [8]
    唐梓涵, 李学进, 李德昌. 耗散粒子动力学方法在生物学领域的应用与研究进展: 从蛋白质结构到细胞力学. 科学通报, 2022, 68(7): 741-761 (Tang Zihan, Li Xuejin, Li Dechang, Dissipative particle dynamics simulations for biological systems: From protein structures to cell mechanics. Chinese Science Bulletin, 2022, 68(7): 741-761 (in Chinese)

    Tang Zihan, Li Xuejin, Li Dechang, Dissipative particle dynamics simulations for biological systems: From protein structures to cell mechanics. Chinese Science Bulletin, 2022, 68(7): 741-761 (in Chinese)
    [9]
    Quinn DJ, Pivkin I, Wong SY, et al. Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems. Annals of Biomedical Engineering, 2010, 39(3): 1041-1050
    [10]
    Yoshida T, Prudent M, D'alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfusion, 2019, 17: 27-52
    [11]
    Yourek G, McCormick SM, Mao JJ, et al. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regenerative Medicine, 2010, 5(5): 713-724 doi: 10.2217/rme.10.60
    [12]
    Secomb TW. Blood flow in the microcirculation. Annual Review of Fluid Mechanics, 2017, 49(1): 443-461 doi: 10.1146/annurev-fluid-010816-060302
    [13]
    Guo Q, Duffy SP, Matthews K, et al. Microfluidic analysis of red blood cell deformability. Journal of Biomechanics, 2014, 47(8): 1767-1776 doi: 10.1016/j.jbiomech.2014.03.038
    [14]
    Garcia-Herreros A, Yeh YT, Peng Z, et al. Cyclic mechanical stresses alter erythrocyte membrane composition and microstructure and trigger macrophage phagocytosis. Advanced Science, 2022, 9(20): 2201481 doi: 10.1002/advs.202201481
    [15]
    Abkarian M, Faivre M, Stone HA. Red blood cell dynamics, deformation and separation in microfluidic devices. Journal of Biomechanics, 2006, 12(2): 217
    [16]
    Antonova N, Khristov K, Alexandrova A, et al. Development of experimental microfluidic device and methodology for assessing microrheological properties of blood. Clinical Hemorheology and Microcirculation, 2023, 83: 231-245 doi: 10.3233/CH-221631
    [17]
    Fay ME, Myers DR, Kumar A, et al. Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts. Proceedings of the National Academy of Sciences, 2016, 113(8): 1987-1992 doi: 10.1073/pnas.1508920113
    [18]
    Ai JF, Xie J, Hu GH. Numerical simulation of red blood cells deformation in microchannel under zero-net-mass-flux jet. Acta Physica Sinica, 2020, 69(23): 234701 doi: 10.7498/aps.69.20200971
    [19]
    Schaff UY, Xing MM, Lin KK, et al. Vascular mimetics based on microfluidics for imaging the leukocyte-endothelial inflammatory response. Lab Chip, 2007, 7(4): 448-456 doi: 10.1039/B617915K
    [20]
    Li J, Lykotrafitis G, Dao M, et al. Cytoskeletal dynamics of human erythrocyte. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(12): 4937-4942
    [21]
    An L, Ji F, Zhao E, et al. Measuring cell deformation by microfluidics. Frontiers in Bioengineering and Biotechnology, 2023, 12: 1214544
    [22]
    Bianchi E, Molteni R, Pardi R, et al. Microfluidics for in vitro biomimetic shear stress-dependent leukocyte adhesion assays. Journal of Biomechanics, 2013, 46(2): 276-283 doi: 10.1016/j.jbiomech.2012.10.024
    [23]
    Sebastian B, Dittrich PS. Microfluidics to mimic blood flow in health and disease. Annual Review of Fluid Mechanics, 2018, 50(1): 483-504 doi: 10.1146/annurev-fluid-010816-060246
    [24]
    Kutlu H, Avci E, Özyurt F. White blood cells detection and classification based on regional convolutional neural networks. Medical Hypotheses, 2020, 135: 109472 doi: 10.1016/j.mehy.2019.109472
    [25]
    Song W, Jia P, Ren Y, et al. Engineering white blood cell membrane-camouflaged nanocarriers for inflammation-related therapeutics. Bioactive Materials, 2023, 23: 80-100 doi: 10.1016/j.bioactmat.2022.10.026
    [26]
    Watts T, Barigou M, Nash GB. Comparative rheology of the adhesion of platelets and leukocytes from flowing blood: why are platelets so small? American Journal of Physiology-Heart and Circulatory Physiology, 2013, 304(11): H1483-H1494
    [27]
    Zhu S, Wu D, Han Y, et al. Inertial microfluidic cube for automatic and fast extraction of white blood cells from whole blood. Lab on a Chip, 2020, 20(2): 244-252 doi: 10.1039/C9LC00942F
    [28]
    Dahl KN, Engler AJ, Pajerowski JD, et al. Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophysical Journal, 2005, 89(4): 2855-2864 doi: 10.1529/biophysj.105.062554
    [29]
    Gossett DR, Tse HT, Lee SA, et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proceedings of the National Academy of Sciences, 2012, 109(20): 7630-7635 doi: 10.1073/pnas.1200107109
    [30]
    Wu HH, Zhou Y, Tabata Y, et al. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. Journal of Controlled Release, 2019, 294: 102-113 doi: 10.1016/j.jconrel.2018.12.019
    [31]
    Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells, 2007, 25(11): 2896-2902 doi: 10.1634/stemcells.2007-0637
    [32]
    Ankrum J, Karp JM. Mesenchymal stem cell therapy: Two steps forward, one step back. Trends in Molecular Medicine, 2010, 16(5): 203-209 doi: 10.1016/j.molmed.2010.02.005
    [33]
    赵振礼, 蔡绍皙, 戴小珍. 微流控芯片在干细胞研究中的应用. 中国生物工程杂志, 2011, 31 (3): 81-86 (Zhao Zhenli, Cai Shaoxi, Dai Xiaozhen. Application of microfluidic chips in stem cell research. China Biotechnology, 2011, 31(3): 81-86 (in Chinese)

    Zhao Zhenli, Cai Shaoxi, Dai Xiaozhen. Application of microfluidic chips in stem cell research. China Biotechnology, 2011, 31(3): 81-86 (in Chinese)
    [34]
    Teo GS, Ankrum JA, Martinelli R, et al. Mesenchymal stem cells transmigrate between and directly through tumor necrosis factor-α-activated endothelial cells via both leukocyte-like and novel mechanisms. Stem Cells, 2012, 30(11): 2472-2486 doi: 10.1002/stem.1198
    [35]
    Nitzsche F, Müller C, Lukomska B. Concise review: MSC adhesion cascade—insights into homing and transendothelial migration. Stem Cells, 2017, 35(6): 1446-1460 doi: 10.1002/stem.2614
    [36]
    Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell, 2009, 4(3): 206-216 doi: 10.1016/j.stem.2009.02.001
    [37]
    Gupta K, Kim DH, Ellison D, et al. Lab-on-a-chip devices as an emerging platform for stem cell biology. Lab on a Chip, 2010, 10(16): 2019-2031 doi: 10.1039/c004689b
    [38]
    Li X, Vlahovska PM, Karniadakis GE. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter, 2013, 9(1): 28-37 doi: 10.1039/C2SM26891D
    [39]
    Yazdani A, Li X, Em Karniadakis G. Dynamic and rheological properties of soft biological cell suspensions. Rheologica Acta, 2015, 55(6): 433-449
    [40]
    Wang XL, Gong XB, Kazuyasu S, et al. An immersed boundary method for mass transfer through porous biomembranes under large deformations. Journal of Computational Physics, 2020, 413: 109444 doi: 10.1016/j.jcp.2020.109444
    [41]
    Pozrikidis C. The axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow. Journal of Fluid Mechanics, 2006, 216: 231-254
    [42]
    McWhirter JL, Noguchi H, Gompper G. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15): 6039-6043
    [43]
    Ye T, Phan-Thien N, Lim CT, et al. Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows. Physical Review E, 2017, 95(6): 063314 doi: 10.1103/PhysRevE.95.063314
    [44]
    Ye T, Pan DY, Huang C, et al. Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications. Physics of Fluids, 2019, 31(1): 011301 doi: 10.1063/1.5068697
    [45]
    Kalukula Y, Stephens AD, Lammerding J, et al. Mechanics and functional consequences of nuclear deformations. Nature Reviews Molecular Cell Biology, 2022, 23(9): 583-602 doi: 10.1038/s41580-022-00480-z
    [46]
    Guo Q, Reiling SJ, Rohrbach P, et al. Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum. Lab on a Chip, 2012, 12(6): 1143-1150 doi: 10.1039/c2lc20857a
    [47]
    Li X, Du E, Dao M, et al. Patient-specific modeling of individual sickle cell behavior under transient hypoxia. PLOS Computational Biology, 2017, 13(3): e1005426 doi: 10.1371/journal.pcbi.1005426
    [48]
    Embury SH. The not-so-simple process of sickle cell vasoocclusion. Microcirculation, 2010, 11(2): 101-113
    [49]
    Papageorgiou DP, Abidi SZ, Chang HY, et al. Simultaneous polymerization and adhesion under hypoxia in sickle cell disease. Proceedings of the National Academy of Sciences, 2018, 115(38): 9473-9478
    [50]
    Bennett-Guerrero E, Veldman TH, Doctor A, et al. Evolution of adverse changes in stored RBCs. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(43): 17063-17068
    [51]
    Berezina TL, Zaets SB, Morgan C, et al. Influence of storage on red blood cell rheological properties. Journal of Surgical Research, 2002, 102(1): 6-12 doi: 10.1006/jsre.2001.6306
    [52]
    Matthews K, Myrand-Lapierre ME, Ang RR, et al. Microfluidic deformability analysis of the red cell storage lesion. Journal of Biomechanics, 2015, 48(15): 4065-4072 doi: 10.1016/j.jbiomech.2015.10.002
    [53]
    Huang YL, Segall JE, Wu M. Microfluidic modeling of the biophysical microenvironment in tumor cell invasion. Lab on a Chip, 2017, 17(19): 3221-3233 doi: 10.1039/C7LC00623C
    [54]
    Zheng Y, Chen J, Cui T, et al. Characterization of red blood cell deformability change during blood storage. Lab Chip, 2014, 14(3): 577-583 doi: 10.1039/C3LC51151K
    [55]
    Sakuma S, Kuroda K, Tsai CH, et al. Red blood cell fatigue evaluation based on the close-encountering point between extensibility and recoverability. Lab on a Chip, 2014, 14(6): 1135-1141 doi: 10.1039/c3lc51003d
    [56]
    Qiang Y, Liu J, Dao M, et al. Mechanical fatigue of human red blood cells. Proceedings of the National Academy of Sciences, 2019, 116(40): 19828-19834 doi: 10.1073/pnas.1910336116
    [57]
    Pan Y, Li Y, Li Y, et al. Fatigue of red blood cells under periodic squeezes in ECMO. Proceedings of the National Academy of Sciences, 2022, 119(49): e2210819119 doi: 10.1073/pnas.2210819119
    [58]
    George A, Pushkaran S, Konstantinidis DG, et al. Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood, 2013, 121(11): 2099-2107 doi: 10.1182/blood-2012-07-441188
    [59]
    Qiang Y, Liu J, Dao M, et al. In vitro assay for single-cell characterization of impaired deformability in red blood cells under recurrent episodes of hypoxia. Lab on a Chip, 2021, 21(18): 3458-3470 doi: 10.1039/D1LC00598G
    [60]
    Pivkin IV, Peng Z, Karniadakis GE, et al. , Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proceedings of the National Academy of Sciences, 2016, 113(28): 7804-7809 doi: 10.1073/pnas.1606751113
    [61]
    Qi XJ, Wang S, Ma SH, et al. Quantitative prediction of flow dynamics and mechanical retention of surface-altered red blood cells through a splenic slit. Physics of Fluids, 2021, 33(5): 051902 doi: 10.1063/5.0050747
    [62]
    Ma SH , Qi XJ, Han KQ, et al. Computational investigation of flow dynamics and mechanical retention of age-associated red blood cells in the spleen. Physical Review Fluids, 2023, 8(6): 063103
    [63]
    Li GS, Ye T, Li XJ. Parallel modeling of cell suspension flow in complex micro-networks with inflow/outflow boundary conditions. Journal of Computational Physics, 2020, 401: 109301
    [64]
    Freund JB. Numerical simulation of flowing blood cells. Annual Review of Fluid Mechanics, 2014, 46(1): 67-95 doi: 10.1146/annurev-fluid-010313-141349
    [65]
    Xiao LL, Lin CS, Chen S, et al. Effects of red blood cell aggregation on the blood flow in a symmetrical stenosed microvessel. Biomechanics and Modeling in Mechanobiology, 2019, 19(1): 159-171
    [66]
    Ye T, Nhan PT, Khoo BC, et al. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow. Physics of Fluids, 2014, 26(11): 111902 doi: 10.1063/1.4900952
    [67]
    Xia H, Strachan BC, Gifford SC, et al. A high-throughput microfluidic approach for 1000-fold leukocyte reduction of platelet-rich plasma. Scientific Reports, 2016, 6(1): 35943 doi: 10.1038/srep35943
    [68]
    Cheng SY, Heilman S, Wasserman M, et al. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab on a Chip, 2007, 7(6): 763-769 doi: 10.1039/b618463d
    [69]
    Tsai M, Kita A, Leach J, et al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. Journal of Clinical Investigation, 2012, 122(1): 408-418 doi: 10.1172/JCI58753
    [70]
    Messlinger S, Schmidt B, Noguchi H, et al. Dynamical regimes and hydrodynamic lift of viscous vesicles under shear. Physical Review E, 2009, 80(1): 011901 doi: 10.1103/PhysRevE.80.011901
    [71]
    Fedosov DA, Fornleitner J, Gompper G. Margination of white blood cells in microcapillary flow. Physical Review Letters, 2012, 108(2): 028104 doi: 10.1103/PhysRevLett.108.028104
    [72]
    Freund JB. Leukocyte margination in a model microvessel. Physics of Fluids, 2007, 19(2): 023301 doi: 10.1063/1.2472479
    [73]
    Alapan Y, Bozuyuk U, Erkoc P, et al. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Science Robotics, 2020, 5: eaba5726 doi: 10.1126/scirobotics.aba5726
    [74]
    Qi XJ, Wang S, Ma SH, et al. Quantitative prediction of rolling dynamics of leukocyte-inspired microroller in blood flow. Physics of Fluids, 2021, 33(12): 121908 doi: 10.1063/5.0072842
    [75]
    Toma C, Wagner WR, Bowry S, et al. Fate of culture-expanded mesenchymal stem cells in the microvasculature. Circulation Research, 2009, 104(3): 398-402 doi: 10.1161/CIRCRESAHA.108.187724
    [76]
    Chou TY, Sun YS, Hou HS, et al. Designing microfluidic devices for studying cellular responses under single or coexisting chemical/electrical/shear stress stimuli. Journal of Visualized Experiments, 2016, 13(114): 54397
    [77]
    Xavier M, Rosendahl P, Herbig M, et al. Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry. Integrative Biology, 2016, 8(5): 616-623 doi: 10.1039/C5IB00304K
    [78]
    Lipowsky HH, Bowers DT, Banik BL. Mesenchymal stem cell deformability and implications for microvascular sequestration. Annals of Biomedical Engineering, 2018, 46(4): 640-654 doi: 10.1007/s10439-018-1985-y
    [79]
    Ni F, Yu WM, Wang X, et al. Ptpn21 controls hematopoietic stem cell homeostasis and biomechanics. Cell Stem Cell, 2019, 24(4): 608-620
    [80]
    Hodgson AC, Verstreken CM, Fisher CL, et al. A microfluidic device for characterizing nuclear deformations. Lab on a Chip, 2017, 17(5): 805-813
    [81]
    Wolf K, Te Lindert M, Krause M, et al. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. Journal of Cell Biology, 2013, 201(7): 1069-1084 doi: 10.1083/jcb.201210152
    [82]
    Davidson PM, Fedorchak GR, Mondésert-Deveraux S, et al. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells. Lab on a Chip, 2019, 19(21): 3652-3663 doi: 10.1039/C9LC00444K
    [83]
    Tong Z, Balzer EM, Dallas MR, et al. Chemotaxis of cell populations through confined spaces at single-cell resolution. PLoS ONE, 2012, 7(1): e29211 doi: 10.1371/journal.pone.0029211
    [84]
    Davidson PM, Sliz J, Isermann P, et al. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments. Integrative Biology, 2015, 7(12): 1534-1546 doi: 10.1039/C5IB00200A
    [85]
    Elacqua JJ, McGregor AL, Lammerding J. Automated analysis of cell migration and nuclear envelope rupture in confined environments. PLoS One, 2018, 13(4): e0195664 doi: 10.1371/journal.pone.0195664
    [86]
    Wang H, Alarcón CN, Liu B, et al. Genetically engineered and enucleated human mesenchymal stromal cells for the targeted delivery of therapeutics to diseased tissue. Nature Biomedical Engineering, 2021, 6(7): 882-897 doi: 10.1038/s41551-021-00815-9
    [87]
    Qi X, Ma S, Jiang X, et al. Single-cell characterization of deformation and dynamics of mesenchymal stem cells in microfluidic systems: A computational study. Physical Review E, 2023, 108(5): 054402
  • Related Articles

    [1]Zhang Yonglong, Cao Shunxiang. NUMERICAL SIMULATION STUDY OF UNDERWATER ACOUSTIC ATTENUATION EFFECTS BY BUBBLE CURTAINS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 31-42. DOI: 10.6052/0459-1879-24-383
    [2]Fu Yao, Wang Xiaolong, Gong Xiaobo. NUMERICAL ANALYSIS OF TRANSMEMBRANE MASS TRANSFER CHARACTERISTICS OF RED BLOOD CELLS IN NARROW CHANNELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1297-1306. DOI: 10.6052/0459-1879-23-557
    [3]Sun Sirui, Zhang Jie, Ni Mingjiu. THE NUMERICAL SIMULATION OF MELTING PROCESS IN A LATERAL HEATED CAVITY UNDER TRANSVERSE MAGNETIC FIELDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2377-2386. DOI: 10.6052/0459-1879-22-155
    [4]Liu Xinyue, Gong Xiaobo, Huang Huaxiong. A NUMERICAL STUDY ON ENDOCYTOSIS OF NANOPARTICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 438-445. DOI: 10.6052/0459-1879-17-411
    [5]Teng Honghui Wang Chun Zhao Wei Jiang Zonglin. Numerical research on the complicated structures on the oblique detonation wave surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 641-645. DOI: 10.6052/0459-1879-2011-4-lxxb2011-004
    [6]Geng Yunfei Chao Yan. Numerical investigation of self-aligning spiked bodies at hypersonic speeds[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 441-446. DOI: 10.6052/0459-1879-2011-3-lxxb2010-732
    [7]Jianqiang Chen, Yifeng Zhang, Dingwu Jiang, Meiliang Mao. Numerical simulation of complex flow with multi lateral jets interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 735-743. DOI: 10.6052/0459-1879-2008-6-2008-020
    [8]Guilai Han, Zonglin Jiang, Deliang Zhang. Numerical investigation on the collision between detonations and shocks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 154-161. DOI: 10.6052/0459-1879-2008-2-2006-633
    [9]NUMERICAL SIMULATION OF OIL-WATER SEPARATION IN LIQUID-LIQUID HYDROCYCLONES USING A STOCHASTIC TRAJECTORY MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(5): 513-520. DOI: 10.6052/0459-1879-1999-5-1995-062
    [10]MODELING OF BITUMINOUS COAL AND LEAN COAL COMBUSTION IN A COMBUSTOR OF CO-FLOWING JETS WITH LARGE VELOCITY DIFFERENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 276-284. DOI: 10.6052/0459-1879-1990-3-1995-945
  • Cited by

    Periodical cited type(1)

    1. 文海舟,胡国辉,刘心悦. 红细胞SDE形态转变的实验研究和数值模型. 自然杂志. 2024(06): 448-460 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (306) PDF downloads (103) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return