Citation: | Liang Dingxin, Lyu Xinyu, Qin Kairong, Xue Chundong. Particle encapsulation and detection based on non-Newtonian microdroplets. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1307-1316. DOI: 10.6052/0459-1879-23-595 |
[1] |
Su WG, Han B, Yeboah S, et al. Fabrication of monodisperse droplets and microcapsules using microfluidic chips: A review of methodologies and applications. Reviews in Chemical Engineering, 2023, 39: 2191-0235
|
[2] |
Han WB, Chen XY. A review on microdroplet generation in microfluidics. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(5): 247 doi: 10.1007/s40430-021-02971-0
|
[3] |
张彩云, 曾毅, 许娜等. 基于液滴微流控的细胞凝胶微球研究进展. 生物工程学报. 2023, 39(1): 74-85 (Zhang Caiyun, Zeng Yi, Xu Na, et al. Cell-loaded hydrogel microspheres based on droplet microfluidics: A review. Chinese Journal of Biotechnology. 2023, 39(1): 74-85 (in Chinese)
Zhang Caiyun, Zeng Yi, Xu Na, et al. Cell-loaded hydrogel microspheres based on droplet microfluidics: A review. Chinese Journal of Biotechnology. 2023, 39(1): 74-85 (in Chinese)
|
[4] |
刘意, 朱瑞, 时嘉辉等. 液滴微流控技术制备亚微米级HNS基PBX复合微球. 含能材料2023, 31(2): 121-129 (Liu Yi, Zhu Rui, Shi Jianhui, et al. Preparation of submicron hns-based pbx composite microspheres by droplet microfluidics. Energetic Materials Frontiers, 2023, 31(2): 121-129 (in Chinese)
Liu Yi, Zhu Rui, Shi Jianhui, et al. Preparation of submicron hns-based pbx composite microspheres by droplet microfluidics. Energetic Materials Frontiers, 2023, 31(2): 121-129 (in Chinese)
|
[5] |
Chen JH, Tian JQ, Chen Y, et al. Probing the kinetics of chemical reactions in ultra-small droplet samples using digital microfluidic nuclear magnetic resonance spectroscopy. Microchemical Journal, 2023, 193: 108984
|
[6] |
Millman JR, Bhatt KH, Prevo BG, et al. Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nature Materials, 2005, 4(1): 98-102 doi: 10.1038/nmat1270
|
[7] |
宋志雄, 王震宇, 朱灵等. 基于液滴微流控的数字链置换等温扩增定量检测MicroRNA. 分析化学, 2023, 51(7): 1122-1131 (Song Zhixiong, Wang Zhenyu, Zhu Ling, et al. Droplet microfluidics-based digital strand displacement isothermal amplification for quantitative detection of MicroRNA. Analytical Chemistry, 2023, 51(7): 1122-1131 (in Chinese)
Song Zhixiong, Wang Zhenyu, Zhu Ling, et al. Droplet microfluidics-based digital strand displacement isothermal amplification for quantitative detection of MicroRNA. Analytical Chemistry, 2023, 51(7): 1122-1131 (in Chinese)
|
[8] |
李政毅, 彭显. 液滴微流控技术在微生物研究中的应用. 四川大学学报2023, 54(3): 673-678 (Li Zhengyi, Peng Xian. Application of droplet-based microfluidics in microbial research. Journal of Sichuan University, 2023, 54(3): 673-678 (in Chinese)
Li Zhengyi, Peng Xian. Application of droplet-based microfluidics in microbial research. Journal of Sichuan University, 2023, 54(3): 673-678 (in Chinese)
|
[9] |
Li LQ, Wu P, Luo ZF, et al. Dean flow assisted single cell and bead encapsulation for high performance single cell expression profiling. ACS Sensors, 2019, 4(5): 1299-1305 doi: 10.1021/acssensors.9b00171
|
[10] |
Harrington J, Esteban LB, Butement J, et al. Dual dean entrainment with volume ratio modulation for efficient droplet co-encapsulation: extreme single-cell indexing. Lab on a Chip, 2021, 21(17): 3378-3386 doi: 10.1039/D1LC00292A
|
[11] |
Chabert M, Viovy JL. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3191-3196
|
[12] |
Kemna EWM, Schoeman RM, Wolbers F, et al. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab on a Chip, 2012, 12(16): 2881-2887 doi: 10.1039/c2lc00013j
|
[13] |
Edd JF, Di Carlo D, Humphry KJ, et al. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on a Chip, 2008, 8(8): 1262-1264 doi: 10.1039/b805456h
|
[14] |
梁定新, 薛春东, 曾效等. 流动聚焦微通道中滴流模式下非牛顿液滴生成的实验研究. 实验流体力学, 2023, 37(2): 36-45 (Liang Dingxin, Xue Chundong, Zeng Xiao, et al. Experimental study on generation of non-Newtonian droplets in dripping mode in a flow focusing microchannel. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 36-45 (in Chinese)
Liang Dingxin, Xue Chundong, Zeng Xiao, et al. Experimental study on generation of non-Newtonian droplets in dripping mode in a flow focusing microchannel. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 36-45 (in Chinese)
|
[15] |
Derzsi L, Kasprzyk M, Plog JP, et al. Flow focusing with viscoelastic liquids. Physics of Fluids, 2013, 25(9): 92001 doi: 10.1063/1.4817995
|
[16] |
Ren Y, Liu Z, Shum HC. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem. Lab on a Chip, 2015, 15(1): 121-134 doi: 10.1039/C4LC00798K
|
[17] |
Li SB, Sun XL. Droplet shape and drag coefficients in non-newtonian fluids: A review. ChemBioEng Reviews, 2023, 10: 1-13 doi: 10.1002/cben.202370101
|
[18] |
Minale M, Caserta S, Guido S. Microconfined shear deformation of a droplet in an equiviscous non-newtonian immiscible fluid: Experiments and modeling. Langmuir, 2010, 26(1): 126-132 doi: 10.1021/la902187a
|
[19] |
Zhu PG, Tang X, Tian Y, et al. Pinch-off of microfluidic droplets with oscillatory velocity of inner phase flow. Scientific Reports, 2016, 6: 31436 doi: 10.1038/srep31436
|
[20] |
Benson BR, Stone HA, Prud'Homme RK. An “off-the-shelf” capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates. Lab on a Chip, 2013, 13(23): 4507 doi: 10.1039/c3lc50804h
|
[21] |
Van Steijn V, Kleijn CR, Kreutzer MT. Flows around confined bubbles and their importance in triggering pinch-off. Physical Review Letters, 2009, 103(21): 214501 doi: 10.1103/PhysRevLett.103.214501
|
[22] |
李战华, 吴健康, 胡国庆. 微流控芯片中的流体流动. 北京: 科学出版社, 2012 (Li Zhanhua, Wu Jiankang, Hu Guoqing. Fluid Flow in the Microfluidic Chipss. Beijing: Science Press, 2012 (in Chinese)
Li Zhanhua, Wu Jiankang, Hu Guoqing. Fluid Flow in the Microfluidic Chipss. Beijing: Science Press, 2012 (in Chinese)
|
[23] |
Liu DD, Xu YM, Ding XT, et al. Utilizing the plateau-rayleigh instability with heat-driven nano-biosensing systems. SLAS Technology, 2015, 20(4): 463-470 doi: 10.1177/2211068215575688
|
[24] |
Debruijn RA. Tipstreaming of drops in simple shear flows. Chemical Engineering Science, 1993, 48(2): 277-284 doi: 10.1016/0009-2509(93)80015-I
|
[25] |
Zhu PG, Kong TT, Kang ZX, et al. Tip-multi-breaking in capillary microfluidic devices. Scientific Reports, 2015, 5: 11102 doi: 10.1038/srep11102
|
[26] |
Shahrivar K, Del Giudice F. Beating poisson stochastic particle encapsulation in flow-focusing microfluidic devices using viscoelastic liquids. Soft Matter, 2022, 18(32): 5928-5933 doi: 10.1039/D2SM00935H
|
[27] |
Xue Y, Onzo BM, Mansour RF. Deep convolutional neural network approach for COVID-19 detection. Computer Systems Science and Engineering, 2022, 42(1): 201-211 doi: 10.32604/csse.2022.022158
|
[28] |
Wu PS, Li H, Zeng NY, et al. FMD-Yolo: An efficient face mask detection method for COVID-19 prevention and control in public. Image and Vision Computing, 2021, 117: 104341
|
[29] |
Zhu YX, Qingyuan JW. SRDD: A lightweight end-to-end object detection with transformer. Connection Science, 2022, 34(1): 2448-2465 doi: 10.1080/09540091.2022.2125499
|
[30] |
Leng B, Wang CQ, Leng M, et al. Deep learning detection network for peripheral blood leukocytes based on improved detection transformer. Biomedical Signal Processing and Control, 2022, 12(82): 104518
|
[31] |
Zhang H, Palit P, Liu YH, et al. Reconfigurable integrated optofluidic droplet laser arrays. ACS Applied Materials & Interfaces, 2020, 12(24): 26936-26942
|
[32] |
Um E, Lee SG, Park JK. Random breakup of microdroplets for single-cell encapsulation. Applied Physics Letters, 2010, 97(15): 153703-1-3
|
[1] | Xie Yu, Li Yanmin, Zhang Chengpu, Zhao Gangling, Chen Xiangwei. NUMERICAL SOLUTION METHOD OF NOETHER SYMMETRY FOR PIEZOELECTRIC MICRO/NANO LEVEL HIGH-PRECISION POSITIONING SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1-11. DOI: 10.6052/0459-1879-25-052 |
[2] | Zhang Xinyu, Xiao Yushan, Wu Zhen, Ren Xiaohui. HIGH PRECISION MODEL AND ACTIVE CONTROL FOR PIEZOELECTRIC INTELLIGENT FUNCTIONALLY GRADIENT SANDWICH STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 130-140. DOI: 10.6052/0459-1879-23-260 |
[3] | Zhang Fengyi, Wang Lihua, Ye Wenjing. ALUMINUM PLATE DEFECT DETECTION BASED ON MULTILEVEL LSTM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2566-2576. DOI: 10.6052/0459-1879-23-193 |
[4] | Hou Songyang, Wang Dongdong, Wu Zhenyu, Lin Zhiwei. PRECISE MID-NODE LUMPED MASS MATRICES FOR 3D 20-NODE HEXAHEDRAL AND 10-NODE TETRAHEDRAL FINITE ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2043-2055. DOI: 10.6052/0459-1879-23-241 |
[5] | Zhang Shuai, Wang Bo, Ma Zeyao, Chen Xiaodong. INFLUENCES OF KEY CONFIGURATION PARAMETERS ON FLOW-FOCUSING MICROFLUIDIC DROPLET GENERATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1257-1266. DOI: 10.6052/0459-1879-23-094 |
[6] | Ma Tianbao, Ren Huilan, Li Jian, Ning Jianguo. LARGE SCALE HIGH PRECISION COMPUTATION FOR EXPLOSION AND IMPACT PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 599-608. DOI: 10.6052/0459-1879-15-382 |
[7] | PROBLEMS ABOUT GIRD AND HIGH ORDER SCHEMES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 398-405. DOI: 10.6052/0459-1879-1999-4-1995-047 |
[8] | STUDY ON HIGH ACCURACY BOUNDARY ALGORITHMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(4): 392-399. DOI: 10.6052/0459-1879-1996-4-1995-347 |
[9] | ON THE BURST DETECTION TECHNIQUES IN WALL-TURBULENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(4): 488-493. DOI: 10.6052/0459-1879-1994-4-1995-572 |
[10] | AN ACCURATE MODAL SUPERPOSITION METHOD FOR COMPUTING MODE SHAPE DERIVATIVES IN STRUCTURAL DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 427-434. DOI: 10.6052/0459-1879-1993-4-1995-662 |
1. |
王德鑫,褚佑彪,刘难生,李祝飞,杨基明. 高背压进气道中内外流耦合作用的大涡模拟. 航空学报. 2021(09): 270-283 .
![]() | |
2. |
王殿恺,文明,王伟东,卿泽旭. 脉冲激光与正激波相互作用过程和减阻机理的实验研究. 力学学报. 2018(06): 1337-1345 .
![]() | |
3. |
高文智,曹绕,李祝飞,曾亿山,杨基明. 涡发生器对高超声速轴对称进气道外部流动的影响. 气体物理. 2018(06): 51-62 .
![]() |