EI、Scopus 收录
中文核心期刊
Liang Dingxin, Lyu Xinyu, Qin Kairong, Xue Chundong. Particle encapsulation and detection based on non-Newtonian microdroplets. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1307-1316. DOI: 10.6052/0459-1879-23-595
Citation: Liang Dingxin, Lyu Xinyu, Qin Kairong, Xue Chundong. Particle encapsulation and detection based on non-Newtonian microdroplets. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1307-1316. DOI: 10.6052/0459-1879-23-595

PARTICLE ENCAPSULATION AND DETECTION BASED ON NON-NEWTONIAN MICRODROPLETS

  • Received Date: December 12, 2023
  • Accepted Date: February 17, 2024
  • Available Online: February 17, 2024
  • Published Date: February 18, 2024
  • Microfluidic droplet encapsulation technology can encapsulate single particle or multiple particles into microscale droplets. It has important biomedical applications such as cell culture, controlled drug release, and trace component analysis, and most of these practical applications involve complex non-Newtonian fluids with multiple phases. At present, it is still difficult to prepare non-Newtonian microdroplets with uniform size and achieve high-efficiency single particle encapsulation with these non-Newtonian microdroplets. In order to address this problem, we first conducted the experiments of non-Newtonian droplet generation and particle encapsulation based on flow-focusing microchannel and polymer solution, and systematically explored the effects of different non-Newtonian properties on droplet generation modes. It was pointed out that the polymer solutions with both shear thinning and elastic effects can realize stable generation of highly monodisperse droplets in jetting mode. On this basis, we combined this stable generation of highly monodisperse droplets in jetting mode with the inertia-viscoelastic particle sorting, and achieved high-efficiency single-particle encapsulation that overcomes the Poisson limitation of single particle encapsulation using traditional methods. Finally, we constructed an automatic detection model of particle encapsulation rate to achieve high-precision detection of the encapsulated particles in both single droplet and multi-droplet scenarios. To sum up, the research results of this paper not only expand the understanding of the basic theory of droplet microfluidic technology to a certain extent, but also fully verify the feasibility and superiority of the strategy of stable generation of non-Newtonian droplet in jetting mode for single-particle encapsulation, which can provide certain reference for optimizing the particle encapsulation technology based on non-Newtonian microdroplet and developing the corresponding integrated device.
  • [1]
    Su WG, Han B, Yeboah S, et al. Fabrication of monodisperse droplets and microcapsules using microfluidic chips: A review of methodologies and applications. Reviews in Chemical Engineering, 2023, 39: 2191-0235
    [2]
    Han WB, Chen XY. A review on microdroplet generation in microfluidics. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(5): 247 doi: 10.1007/s40430-021-02971-0
    [3]
    张彩云, 曾毅, 许娜等. 基于液滴微流控的细胞凝胶微球研究进展. 生物工程学报. 2023, 39(1): 74-85 (Zhang Caiyun, Zeng Yi, Xu Na, et al. Cell-loaded hydrogel microspheres based on droplet microfluidics: A review. Chinese Journal of Biotechnology. 2023, 39(1): 74-85 (in Chinese)

    Zhang Caiyun, Zeng Yi, Xu Na, et al. Cell-loaded hydrogel microspheres based on droplet microfluidics: A review. Chinese Journal of Biotechnology. 2023, 39(1): 74-85 (in Chinese)
    [4]
    刘意, 朱瑞, 时嘉辉等. 液滴微流控技术制备亚微米级HNS基PBX复合微球. 含能材料2023, 31(2): 121-129 (Liu Yi, Zhu Rui, Shi Jianhui, et al. Preparation of submicron hns-based pbx composite microspheres by droplet microfluidics. Energetic Materials Frontiers, 2023, 31(2): 121-129 (in Chinese)

    Liu Yi, Zhu Rui, Shi Jianhui, et al. Preparation of submicron hns-based pbx composite microspheres by droplet microfluidics. Energetic Materials Frontiers, 2023, 31(2): 121-129 (in Chinese)
    [5]
    Chen JH, Tian JQ, Chen Y, et al. Probing the kinetics of chemical reactions in ultra-small droplet samples using digital microfluidic nuclear magnetic resonance spectroscopy. Microchemical Journal, 2023, 193: 108984
    [6]
    Millman JR, Bhatt KH, Prevo BG, et al. Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nature Materials, 2005, 4(1): 98-102 doi: 10.1038/nmat1270
    [7]
    宋志雄, 王震宇, 朱灵等. 基于液滴微流控的数字链置换等温扩增定量检测MicroRNA. 分析化学, 2023, 51(7): 1122-1131 (Song Zhixiong, Wang Zhenyu, Zhu Ling, et al. Droplet microfluidics-based digital strand displacement isothermal amplification for quantitative detection of MicroRNA. Analytical Chemistry, 2023, 51(7): 1122-1131 (in Chinese)

    Song Zhixiong, Wang Zhenyu, Zhu Ling, et al. Droplet microfluidics-based digital strand displacement isothermal amplification for quantitative detection of MicroRNA. Analytical Chemistry, 2023, 51(7): 1122-1131 (in Chinese)
    [8]
    李政毅, 彭显. 液滴微流控技术在微生物研究中的应用. 四川大学学报2023, 54(3): 673-678 (Li Zhengyi, Peng Xian. Application of droplet-based microfluidics in microbial research. Journal of Sichuan University, 2023, 54(3): 673-678 (in Chinese)

    Li Zhengyi, Peng Xian. Application of droplet-based microfluidics in microbial research. Journal of Sichuan University, 2023, 54(3): 673-678 (in Chinese)
    [9]
    Li LQ, Wu P, Luo ZF, et al. Dean flow assisted single cell and bead encapsulation for high performance single cell expression profiling. ACS Sensors, 2019, 4(5): 1299-1305 doi: 10.1021/acssensors.9b00171
    [10]
    Harrington J, Esteban LB, Butement J, et al. Dual dean entrainment with volume ratio modulation for efficient droplet co-encapsulation: extreme single-cell indexing. Lab on a Chip, 2021, 21(17): 3378-3386 doi: 10.1039/D1LC00292A
    [11]
    Chabert M, Viovy JL. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3191-3196
    [12]
    Kemna EWM, Schoeman RM, Wolbers F, et al. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab on a Chip, 2012, 12(16): 2881-2887 doi: 10.1039/c2lc00013j
    [13]
    Edd JF, Di Carlo D, Humphry KJ, et al. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on a Chip, 2008, 8(8): 1262-1264 doi: 10.1039/b805456h
    [14]
    梁定新, 薛春东, 曾效等. 流动聚焦微通道中滴流模式下非牛顿液滴生成的实验研究. 实验流体力学, 2023, 37(2): 36-45 (Liang Dingxin, Xue Chundong, Zeng Xiao, et al. Experimental study on generation of non-Newtonian droplets in dripping mode in a flow focusing microchannel. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 36-45 (in Chinese)

    Liang Dingxin, Xue Chundong, Zeng Xiao, et al. Experimental study on generation of non-Newtonian droplets in dripping mode in a flow focusing microchannel. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 36-45 (in Chinese)
    [15]
    Derzsi L, Kasprzyk M, Plog JP, et al. Flow focusing with viscoelastic liquids. Physics of Fluids, 2013, 25(9): 92001 doi: 10.1063/1.4817995
    [16]
    Ren Y, Liu Z, Shum HC. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem. Lab on a Chip, 2015, 15(1): 121-134 doi: 10.1039/C4LC00798K
    [17]
    Li SB, Sun XL. Droplet shape and drag coefficients in non-newtonian fluids: A review. ChemBioEng Reviews, 2023, 10: 1-13 doi: 10.1002/cben.202370101
    [18]
    Minale M, Caserta S, Guido S. Microconfined shear deformation of a droplet in an equiviscous non-newtonian immiscible fluid: Experiments and modeling. Langmuir, 2010, 26(1): 126-132 doi: 10.1021/la902187a
    [19]
    Zhu PG, Tang X, Tian Y, et al. Pinch-off of microfluidic droplets with oscillatory velocity of inner phase flow. Scientific Reports, 2016, 6: 31436 doi: 10.1038/srep31436
    [20]
    Benson BR, Stone HA, Prud'Homme RK. An “off-the-shelf” capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates. Lab on a Chip, 2013, 13(23): 4507 doi: 10.1039/c3lc50804h
    [21]
    Van Steijn V, Kleijn CR, Kreutzer MT. Flows around confined bubbles and their importance in triggering pinch-off. Physical Review Letters, 2009, 103(21): 214501 doi: 10.1103/PhysRevLett.103.214501
    [22]
    李战华, 吴健康, 胡国庆. 微流控芯片中的流体流动. 北京: 科学出版社, 2012 (Li Zhanhua, Wu Jiankang, Hu Guoqing. Fluid Flow in the Microfluidic Chipss. Beijing: Science Press, 2012 (in Chinese)

    Li Zhanhua, Wu Jiankang, Hu Guoqing. Fluid Flow in the Microfluidic Chipss. Beijing: Science Press, 2012 (in Chinese)
    [23]
    Liu DD, Xu YM, Ding XT, et al. Utilizing the plateau-rayleigh instability with heat-driven nano-biosensing systems. SLAS Technology, 2015, 20(4): 463-470 doi: 10.1177/2211068215575688
    [24]
    Debruijn RA. Tipstreaming of drops in simple shear flows. Chemical Engineering Science, 1993, 48(2): 277-284 doi: 10.1016/0009-2509(93)80015-I
    [25]
    Zhu PG, Kong TT, Kang ZX, et al. Tip-multi-breaking in capillary microfluidic devices. Scientific Reports, 2015, 5: 11102 doi: 10.1038/srep11102
    [26]
    Shahrivar K, Del Giudice F. Beating poisson stochastic particle encapsulation in flow-focusing microfluidic devices using viscoelastic liquids. Soft Matter, 2022, 18(32): 5928-5933 doi: 10.1039/D2SM00935H
    [27]
    Xue Y, Onzo BM, Mansour RF. Deep convolutional neural network approach for COVID-19 detection. Computer Systems Science and Engineering, 2022, 42(1): 201-211 doi: 10.32604/csse.2022.022158
    [28]
    Wu PS, Li H, Zeng NY, et al. FMD-Yolo: An efficient face mask detection method for COVID-19 prevention and control in public. Image and Vision Computing, 2021, 117: 104341
    [29]
    Zhu YX, Qingyuan JW. SRDD: A lightweight end-to-end object detection with transformer. Connection Science, 2022, 34(1): 2448-2465 doi: 10.1080/09540091.2022.2125499
    [30]
    Leng B, Wang CQ, Leng M, et al. Deep learning detection network for peripheral blood leukocytes based on improved detection transformer. Biomedical Signal Processing and Control, 2022, 12(82): 104518
    [31]
    Zhang H, Palit P, Liu YH, et al. Reconfigurable integrated optofluidic droplet laser arrays. ACS Applied Materials & Interfaces, 2020, 12(24): 26936-26942
    [32]
    Um E, Lee SG, Park JK. Random breakup of microdroplets for single-cell encapsulation. Applied Physics Letters, 2010, 97(15): 153703-1-3
  • Related Articles

    [1]Xie Yu, Li Yanmin, Zhang Chengpu, Zhao Gangling, Chen Xiangwei. NUMERICAL SOLUTION METHOD OF NOETHER SYMMETRY FOR PIEZOELECTRIC MICRO/NANO LEVEL HIGH-PRECISION POSITIONING SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1-11. DOI: 10.6052/0459-1879-25-052
    [2]Zhang Xinyu, Xiao Yushan, Wu Zhen, Ren Xiaohui. HIGH PRECISION MODEL AND ACTIVE CONTROL FOR PIEZOELECTRIC INTELLIGENT FUNCTIONALLY GRADIENT SANDWICH STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 130-140. DOI: 10.6052/0459-1879-23-260
    [3]Zhang Fengyi, Wang Lihua, Ye Wenjing. ALUMINUM PLATE DEFECT DETECTION BASED ON MULTILEVEL LSTM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2566-2576. DOI: 10.6052/0459-1879-23-193
    [4]Hou Songyang, Wang Dongdong, Wu Zhenyu, Lin Zhiwei. PRECISE MID-NODE LUMPED MASS MATRICES FOR 3D 20-NODE HEXAHEDRAL AND 10-NODE TETRAHEDRAL FINITE ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2043-2055. DOI: 10.6052/0459-1879-23-241
    [5]Zhang Shuai, Wang Bo, Ma Zeyao, Chen Xiaodong. INFLUENCES OF KEY CONFIGURATION PARAMETERS ON FLOW-FOCUSING MICROFLUIDIC DROPLET GENERATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1257-1266. DOI: 10.6052/0459-1879-23-094
    [6]Ma Tianbao, Ren Huilan, Li Jian, Ning Jianguo. LARGE SCALE HIGH PRECISION COMPUTATION FOR EXPLOSION AND IMPACT PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 599-608. DOI: 10.6052/0459-1879-15-382
    [7]PROBLEMS ABOUT GIRD AND HIGH ORDER SCHEMES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 398-405. DOI: 10.6052/0459-1879-1999-4-1995-047
    [8]STUDY ON HIGH ACCURACY BOUNDARY ALGORITHMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(4): 392-399. DOI: 10.6052/0459-1879-1996-4-1995-347
    [9]ON THE BURST DETECTION TECHNIQUES IN WALL-TURBULENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(4): 488-493. DOI: 10.6052/0459-1879-1994-4-1995-572
    [10]AN ACCURATE MODAL SUPERPOSITION METHOD FOR COMPUTING MODE SHAPE DERIVATIVES IN STRUCTURAL DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 427-434. DOI: 10.6052/0459-1879-1993-4-1995-662
  • Cited by

    Periodical cited type(3)

    1. 王德鑫,褚佑彪,刘难生,李祝飞,杨基明. 高背压进气道中内外流耦合作用的大涡模拟. 航空学报. 2021(09): 270-283 .
    2. 王殿恺,文明,王伟东,卿泽旭. 脉冲激光与正激波相互作用过程和减阻机理的实验研究. 力学学报. 2018(06): 1337-1345 . 本站查看
    3. 高文智,曹绕,李祝飞,曾亿山,杨基明. 涡发生器对高超声速轴对称进气道外部流动的影响. 气体物理. 2018(06): 51-62 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (123) PDF downloads (42) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return