Citation: | Zhou Xin, Sheng Jianlong, Ye Zuyang. Study on two-phase displacement flow behavior through rough-walled fractures using LBM simulation. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1475-1487. DOI: 10.6052/0459-1879-23-509 |
[1] |
于恩毅, 邸元, 吴辉等. CO2 地质封存风险分析的多场耦合数值模拟技术综述. 力学学报, 2023, 55(9): 2075-2090 (Yu Enyi, Di Yuan, Wu Hui, et al. Numerical simulation on risk analysis of CO2 geological storage under multi-field coupling: A review. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2075-2090 (in Chinese)
Yu Enyi, Di Yuan, Wu Hui, et al. Numerical simulation on risk analysis of CO2 geological storage under multi-field coupling: A review. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2075-2090 (in Chinese)
|
[2] |
Wei B, Wang B, Li X, et al. CO2 storage in depleted oil and gas reservoirs: A review. Advances in Geo-Energy Research, 2023, 9(2): 76-93 doi: 10.46690/ager.2023.08.02
|
[3] |
刘文超, 乔成成, 汪萍等. 页岩气井压裂液返排与生产阶段的压裂裂缝特征差异研究. 力学学报, 2023, 55(6): 1382-1393 (Liu Wenchao, Qiao Chengcheng, Wang Ping, et al. Study on fracture characteristics difference between fracturing fluid flowback and gas production stages of shale gas wells. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1382-1393 (in Chinese)
Liu Wenchao, Qiao Chengcheng, Wang Ping, et al. Study on fracture characteristics difference between fracturing fluid flowback and gas production stages of shale gas wells. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1382-1393 (in Chinese)
|
[4] |
Shen W, Ma T, Zuo L, et al. Advances and prospects of supercritical CO2 for shale gas extraction and geological sequestration in gas shale reservoirs. Energy & Fuels, 2024, 38(2): 789-805
|
[5] |
于洪丹, 崔景川, 陈卫忠等. 核废料地下储库围岩长期水力响应特征. 岩石力学与工程学报, 2022, 41(S1): 2639-2648 (Yu Hongdan, Cui Jingchuan, Chen Weizhong, et al. Characterization of the long-term hydro-mechanical response in the host rock of a potential nuclear waste disposal repository. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2639-2648 (in Chinese)
Yu Hongdan, Cui Jingchuan, Chen Weizhong, et al. Characterization of the long-term hydro-mechanical response in the host rock of a potential nuclear waste disposal repository. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2639-2648 (in Chinese)
|
[6] |
张烨, 施小清, 邓亚平等. 结合蒸汽和空气注入修复多孔介质中DNAPL污染物的多目标多相流模拟优化. 水文地质工程地质, 2015, 42(5): 140-148 (Zhang Ye, Shi Xiaoqing, Deng Yaping, et al. Multi-objective multi-phase optimization with steam and air co-injection for DNAPL contaminant remediation in porous media. Hydogeology & Engineering Geology, 2015, 42(5): 140-148 (in Chinese)
Zhang Ye, Shi Xiaoqing, Deng Yaping, et al. Multi-objective multi-phase optimization with steam and air co-injection for DNAPL contaminant remediation in porous media. Hydogeology & Engineering Geology, 2015, 42(5): 140-148 (in Chinese)
|
[7] |
Karpyn ZT, Grader AS, Halleck PM. Visualization of fluid occupancy in a rough fracture using micro-tomography. Journal of Colloid and Interface Science, 2007, 307(1): 181-187 doi: 10.1016/j.jcis.2006.10.082
|
[8] |
Al-Housseiny TT, Tsai PA, Stone HA. Control of interfacial instabilities using flow geometry. Nature Physics, 2012, 8(10): 747-750 doi: 10.1038/nphys2396
|
[9] |
Chen YF, Wu DS, Fang S, et al. Experimental study on two-phase flow in rough fracture: Phase diagram and localized flow channel. International Journal of Heat and Mass Transfer, 2018, 122: 1298-1307 doi: 10.1016/j.ijheatmasstransfer.2018.02.031
|
[10] |
Hu R, Zhou CX, Wu DS, et al. Roughness control on multiphase flow in rock fractures. Geophysical Research Letters, 2019, 46(21): 12002-12011 doi: 10.1029/2019GL084762
|
[11] |
李博, 王晔, 邹良超等. 岩石裂隙内浆液-水两相流可视化试验与驱替规律研究. 岩土工程学报, 2022, , 44(9): 1608-1616, 2-3 (Li Bo, Wang Ye, Zou Liangchao, et al. Displacement laws of grout-water two-phase flow in a rough-walled rock fracture through visualization tests. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1608-1616, 2-3 (in Chinese)
Li Bo, Wang Ye, Zou Liangchao, et al. Displacement laws of grout-water two-phase flow in a rough-walled rock fracture through visualization tests. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1608-1616, 2-3 (in Chinese)
|
[12] |
胡冉, 钟翰贤, 陈益峰. 变开度岩体裂隙多相渗流实验与有效渗透率模型. 力学学报, 2023, 55(2): 543-553 (Hu Ran, Zhong Hanxian, Chen Yifeng. Experiments and effective permeability model for multiphase flow in rock fractures with variable apertures. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 543-553 (in Chinese)
Hu Ran, Zhong Hanxian, Chen Yifeng. Experiments and effective permeability model for multiphase flow in rock fractures with variable apertures. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 543-553 (in Chinese)
|
[13] |
Wang LC, Cardenas MB. Connecting pressure-saturation and relative permeability models to fracture properties: The case of capillary-dominated flow of supercritical CO2 and brine. Water Resources Research, 2018, 54(9): 6965-6982 doi: 10.1029/2018WR023526
|
[14] |
Yang ZB, Li DQ, Xue S, et al. Effect of aperture field anisotropy on two-phase flow in rough fractures. Advances in Water Resources, 2019, 132: 103390 doi: 10.1016/j.advwatres.2019.103390
|
[15] |
盛建龙, 韩云飞, 叶祖洋等. 粗糙裂隙水、气两相流相对渗透系数模型与数值分析. 岩土力学, 2020, 41(3): 1048-1055 (Sheng Jianglong, Han Yunfei, Ye Zuyang, et al. The relative permeability model for water-air two-phase flow in rough-walled fractures of rock and numerical analysis. Rock and Soil Mechanics, 2020, 41(3): 1048-1055 (in Chinese)
Sheng Jianglong, Han Yunfei, Ye Zuyang, et al. The relative permeability model for water-air two-phase flow in rough-walled fractures of rock and numerical analysis. Rock and Soil Mechanics, 2020, 41(3): 1048-1055 (in Chinese)
|
[16] |
Zhao B, MacMinn CW, Juanes R. Wettability control on multiphase flow in patterned microfluidics. Proceedings of the National Academy of Sciences, 2016, 113(37): 10251-10256 doi: 10.1073/pnas.1603387113
|
[17] |
魏鹳举, 胡冉, 廖震等. 湿润性对孔隙介质两相渗流驱替效率的影响. 力学学报, 2021, 53(4): 1008-1017 (Wei Guanju, Hu Ran, Liao Zhen, et al. Effects of wettability on displacement effciency of two-phase flow in porous media. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1008-1017 (in Chinese)
Wei Guanju, Hu Ran, Liao Zhen, et al. Effects of wettability on displacement effciency of two-phase flow in porous media. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1008-1017 (in Chinese)
|
[18] |
Trojer M, Szulczewski ML, Juanes R. Stabilizing fluid-fluid displacements in porous media through wettability alteration. Physical Review Applied, 2015, 3(5): 054008 doi: 10.1103/PhysRevApplied.3.054008
|
[19] |
Holtzman R, Segre E. Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Physical Review Letters, 2015, 115(16): 164501 doi: 10.1103/PhysRevLett.115.164501
|
[20] |
Bergslien E, Fountain J. The effect of changes in surface wettability on two-phase saturated flow in horizontal replicas of single natural fractures. Journal of Contaminant Hydrology, 2006, 88(3-4): 153-180 doi: 10.1016/j.jconhyd.2006.06.009
|
[21] |
Lee HB, Kim BW. Effect of NAPL exposure on the wettability and two-phase flow in a single rock fracture. Hydrological Processes, 2015, 29(23): 4919-4931 doi: 10.1002/hyp.10543
|
[22] |
Qiu Y, Xu K, Pahlavan AA, et al. Wetting transition and fluid trapping in a microfluidic fracture. Proceedings of the National Academy of Sciences, 2023, 120(22): e2303515120 doi: 10.1073/pnas.2303515120
|
[23] |
Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998, 30(1): 329-364 doi: 10.1146/annurev.fluid.30.1.329
|
[24] |
Aidun CK, Clausen JR. Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics, 2010, 42: 439-472 doi: 10.1146/annurev-fluid-121108-145519
|
[25] |
Qian YH, d'Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 1992, 17(6): 479 doi: 10.1209/0295-5075/17/6/001
|
[26] |
申林方, 曾叶, 王志良等. 考虑几何形貌特征的粗糙岩体裂隙渗流特性研究. 岩石力学与工程学报, 2019, 38(S1): 2704-2711 (Shen Linfang, Zeng Ye, Wang Zhiliang, et al. Research on seepage properties of rough fracture considering geometrical morphology. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2704-2711 (in Chinese)
Shen Linfang, Zeng Ye, Wang Zhiliang, et al. Research on seepage properties of rough fracture considering geometrical morphology. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2704-2711 (in Chinese)
|
[27] |
张戈, 田园, 李英骏. 不同JRC粗糙单裂隙的渗流机理数值模拟研究. 中国科学: 物理学, 力学, 天文学, 2019, 49(1): 30-39 (Zhang Ge, Tian Yuan, Li Yingjun. Numerical study on the mechanism of fluid flow through single rough fractures with different JRC. Science China : Physics, Mechanics & Astronomy, 2019, 49(1): 30-39 (in Chinese)
Zhang Ge, Tian Yuan, Li Yingjun. Numerical study on the mechanism of fluid flow through single rough fractures with different JRC. Science China: Physics, Mechanics & Astronomy, 2019, 49(1): 30-39 (in Chinese)
|
[28] |
王登科, 田晓瑞, 魏建平等. 基于工业CT扫描和LBM方法的含瓦斯煤裂隙演化与渗流特性. 采矿与安全工程学报, 2021, 39(2): 387-396 (Wang Dengke, Tian Xiaorui, Wei Jianping, et al. Fracture evolution and permeability characteristics in gas-bearing coal based on industrial CT scanning and LBM method. Journal of Mining & Safety Engineering, 2021, 39(2): 387-396 (in Chinese)
Wang Dengke, Tian Xiaorui, Wei Jianping, et al. Fracture evolution and permeability characteristics in gas-bearing coal based on industrial CT scanning and LBM method. Journal of Mining & Safety Engineering, 2021, 39(2): 387-396 (in Chinese)
|
[29] |
Liu Y, Berg S, Ju Y, et al. Systematic investigation of corner flow impact in forced imbibition. Water Resources Research, 2022, 58(10): e2022WR032402 doi: 10.1029/2022WR032402
|
[30] |
Wang H, Cai J, Su Y, et al. Imbibition behaviors in shale nanoporous media from pore-scale perspectives. Capillarity, 2023, 9(2): 32-44 doi: 10.46690/capi.2023.11.02
|
[31] |
张晟庭, 李靖, 陈掌星等. 基于改进LBM的气液自发渗吸过程中动态润湿效应模拟. 力学学报, 2023, 55(2): 355-368 (Zhang Shengting, Li Jing, Chen Zhangxing, et al. Simulation of dynamic wetting effect during gas-liquid spontaneous imbibition based on modified LBM. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 355-368 (in Chinese) doi: 10.6052/0459-1879-22-409
Zhang Shengting, Li Jing, Chen Zhangxing, et al. Simulation of dynamic wetting effect during gas-liquid spontaneous imbibition based on modified LBM. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 355-368 (in Chinese) doi: 10.6052/0459-1879-22-409
|
[32] |
Huang H, Thorne Jr DT, Schaap MG, et al. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Physical Review E, 2007, 76(6): 066701 doi: 10.1103/PhysRevE.76.066701
|
[33] |
Dou Z, Zhou Z, Sleep BE. Influence of wettability on interfacial area during immiscible liquid invasion into a 3D self-affine rough fracture: Lattice Boltzmann simulations. Advances in Water Resources, 2013, 61: 1-11 doi: 10.1016/j.advwatres.2013.08.007
|
[34] |
Guiltinan EJ, Santos JE, Cardenas MB, et al. Two-phase fluid flow properties of rough fractures with heterogeneous wettability: Analysis with lattice Boltzmann simulations. Water Resources Research, 2021, 57(1): e2020WR027943 doi: 10.1029/2020WR027943
|
[35] |
Yi J, Liu L, Xia Z, et al. Effects of wettability on relative permeability of rough-walled fracture at pore-scale: A lattice Boltzmann analysis. Applied Thermal Engineering, 2021, 194: 117100 doi: 10.1016/j.applthermaleng.2021.117100
|
[36] |
张春华, 刘卫东, 苟斐斐. 基于格子玻尔兹曼的润湿性对降压效果的研究. 西南石油大学学报(自然科学版), 2017, 39(3): 111-120 (Zhang Chunhua, Liu Weidong, Gou Feifei. Simulation study on the effects of wettability on depressurization based on lattice boltzmann model. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(3): 111-120 (in Chinese)
Zhang Chunhua, Liu Weidong, Gou Feifei. Simulation study on the effects of wettability on depressurization based on lattice boltzmann model. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(3): 111-120 (in Chinese)
|
[37] |
唐明明, 卢双舫, 辛盈等. 基于格子玻尔兹曼方法的致密砂岩驱替模拟. 中国石油大学学报(自然科学版), 2020, 44(2): 10-19 (Tang Mingming, Lu Shuangfang, Xin Ying, et al. Displacement of tight sandstone based on lattice Boltzmann method. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(2): 10-19 (in Chinese)
Tang Mingming, Lu Shuangfang, Xin Ying, et al. Displacement of tight sandstone based on lattice Boltzmann method. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(2): 10-19 (in Chinese)
|
[38] |
Zhou X, Sheng J, Ye Z. Evaluation of immiscible two-phase quasi-static displacement flow in rough fractures using LBM simulation: Effects of roughness and wettability. Capillarity, 2024, 11(2): 41-52
|
[39] |
Brown SR. Fluid flow through rock joints: The effect of surface roughness. Journal of Geophysical Research: Solid Earth, 1987, 92(B2): 1337-1347 doi: 10.1029/JB092iB02p01337
|
[40] |
Ye ZY, Liu HH, Jiang QH, et al. Two-phase flow properties in aperture-based fractures under normal deformation conditions: Analytical approach and numerical simulation. Journal of Hydrology, 2017, 545: 72-87 doi: 10.1016/j.jhydrol.2016.12.017
|
[41] |
Ye ZY, Liu HH, Jiang QH, et al. Two-phase flow properties of a horizontal fracture: The effect of aperture distribution. Advances in Water Resources, 2015, 76: 43-54 doi: 10.1016/j.advwatres.2014.12.001
|
[42] |
张传庆, 郭宇航, 徐金顺等. 基于功率谱密度的评估岩石节理粗糙度新方法. 岩土力学, 2022, 43(11): 3135-3143 (Zhang Chuanqing, Guo Yuhang, Xu Jinshun, et al. A method for evaluating rock joint roughness based on power spectral density. Rock and Soil Mechanics, 2022, 43(11): 3135-3143 (in Chinese)
Zhang Chuanqing, Guo Yuhang, Xu Jinshun, et al. A method for evaluating rock joint roughness based on power spectral density. Rock and Soil Mechanics, 2022, 43(11): 3135-3143 (in Chinese)
|
[43] |
孙辅庭, 佘成学, 万利台. 新的岩石节理粗糙度指标研究. 岩石力学与工程学报, 2013, 32(12): 2513-2519 (Sun Futing, She Chengxue, Wan Litai. Research on a new roughness index of rock joint. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2513-2519 (in Chinese)
Sun Futing, She Chengxue, Wan Litai. Research on a new roughness index of rock joint. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2513-2519 (in Chinese)
|
[44] |
Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47(3): 1815-1819 doi: 10.1103/PhysRevE.47.1815
|
[45] |
Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 1997, 9(6): 1591-1598 doi: 10.1063/1.869307
|
[46] |
He X, Zou Q, Luo L S, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. Journal of Statistical Physics, 1997, 87: 115-136 doi: 10.1007/BF02181482
|
[47] |
Yamabe H, Tsuji T, Liang Y, et al. Lattice Boltzmann simulations of supercritical CO2-water drainage displacement in porous media: CO2 saturation and displacement mechanism. Environmental Science & Technology, 2015, 49(1): 537-543
|
[48] |
Latt J, Malaspinas O, Kontaxakis D, et al. Palabos: Parallel lattice Boltzmann solver. Computers & Mathematics with Applications, 2021, 81: 334-350
|
[49] |
鞠杨, 王金波, 高峰等. 变形条件下孔隙岩石 CH4 微细观渗流的 Lattice Boltzmann 模拟. 科学通报, 2014, 22: 2127-2136 ((Ju Yang, Wang Jinbo, Gao Feng, et al. Lattice-Boltzmann simulation of microscale CH4 flow in porous rock subject to force-induced deformation. China Science Bulletin, 2014, 22: 2127-2136
(Ju Yang, Wang Jinbo, Gao Feng, et al. Lattice-Boltzmann simulation of microscale CH4 flow in porous rock subject to force-induced deformation. China Science Bulletin, 2014, 22: 2127-2136
|
[50] |
Tokunaga TK. Physicochemical controls on adsorbed water film thickness in unsaturated geological media. Water Resources Research, 2011, 47(8): W08514 doi: 10.1029/2011WR010676
|
[51] |
张晟庭, 李靖, 陈掌星等. 气液非混相驱替过程中的卡断机理及模拟研究. 力学学报, 2022, 54(5): 1429-1442 (Zhang Shengting, Li Jing, Chen Zhangxing, et al. Study on snap-off mechanism and simulation during gas-liquid immiscible displacement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1429-1442 (in Chinese)
Zhang Shengting, Li Jing, Chen Zhangxing, et al. Study on snap-off mechanism and simulation during gas-liquid immiscible displacement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1429-1442 (in Chinese)
|
[52] |
Li J, Li X, Wang X, et al. Water distribution characteristic and effect on methane adsorption capacity in shale clay. International Journal of Coal Geology, 2016, 159: 135-154 doi: 10.1016/j.coal.2016.03.012
|
[53] |
Li J, Li X, Wu K, et al. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay. International Journal of Coal Geology, 2017, 179: 253-268 doi: 10.1016/j.coal.2017.06.008
|
[54] |
李靖, 李相方, 王香增等. 页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影. 力学学报, 2016, 48(5): 1217-1228 (Li Jing, Li Xiangfang, Wang Xiangzeng, et al. Effect of water distribution on methane adsorption capacity in shale clay. Chinese Journal of Ship Research, 2016, 48(5): 1217-1228 (in Chinese)
Li Jing, Li Xiangfang, Wang Xiangzeng, et al. Effect of water distribution on methane adsorption capacity in shale clay. Chinese Journal of Ship Research, 2016, 48(5): 1217-1228 (in Chinese)
|
[55] |
Zhang T, Javadpour F, Li J, et al. Pore-scale perspective of gas/water two-phase flow in shale. SPE Journal, 2021, 26(2): 828-846 doi: 10.2118/205019-PA
|
[56] |
Chaudhary K, Bayani CM, Wolfe WW, et al. Pore-scale trapping of supercritical CO2 and the role of grain wettability and shape. Geophysical Research Letters, 2013, 40(15): 3878-3882 doi: 10.1002/grl.50658
|
[1] | Zhao Yong, Ge Yixuan, Chen Xinmeng, Chen Zhenyu, Wang Lei. MULTI-DISTRIBUTION REGULARIZED LATTICE BOLTZMANN METHOD FOR CONVECTION-DIFFUSION-SYSTEM-BASED INCOMPRESSIBLE NAVIER-STOKES EQUATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1-14. DOI: 10.6052/0459-1879-25-096 |
[2] | Luo Renyu, Li Qizhi, Zu Gongbo, Huang Yunjin, Yang Gengchao, Yao Qinghe. A SUPER-RESOLUTION LATTICE BOLTZMANN METHOD BASED ON CONVOLUTIONAL NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3612-3624. DOI: 10.6052/0459-1879-24-248 |
[3] | Liu Chunyou, Li Zuoxu, Wang Lianping. LOCAL GRID REFINEMENT APPROACH FOR LATTICE BOLTZMANN METHOD: DISTRIBUTION FUNCTION CONVERSION BETWEEN COARSE AND FINE GRIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2480-2503. DOI: 10.6052/0459-1879-23-229 |
[4] | Yang Xuguang, Wang Lei. REGULARIZED LATTICE BOLTZMANN METHOD FOR MULTI-COMPONENT AND MULTI-PHASE PENG-ROBINSON FLUIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1649-1661. DOI: 10.6052/0459-1879-23-096 |
[5] | Tong Ying, Xia Jian, Chen Long, Xue Haotian. AN IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD BASED ON IMPLICIT DIFFUSE DIRECT-FORCING SCHEME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 94-105. DOI: 10.6052/0459-1879-21-315 |
[6] | Qiaozhong Li, Mufeng Chen, You Li, Xiaodong Niu, Khan Adnan. IMMERSED BOUNDARY-SIMPLIFIED THERMAL LATTICE BOLTZMANN METHOD FOR FLUID-STRUCTURE INTERACTION PROBLEM WITH HEAT TRANSFER AND ITS APPLICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 392-404. DOI: 10.6052/0459-1879-18-278 |
[7] | Cheng Zhilin, Ning Zhengfu, Zeng Yan, Wang Qing, Sui Weibo, Zhang Wentong, Ye Hongtao, Chen Zhili. A LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN POROUS MEDIA USING A MODIFIED BOUNDARY CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 124-134. DOI: 10.6052/0459-1879-18-179 |
[8] | Zhiwei Tian, Chuguang Zheng, Xiaoming Wang. Lattice boltzmann simulation of gas micro-flows in transitional regime[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 828-834. DOI: 10.6052/0459-1879-2009-6-2008-472 |
[9] | Lattice boltzmann method for simulating the displacement of deformable membrane in fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(2): 164-168. DOI: 10.6052/0459-1879-2005-2-2004-205 |
[10] | DIES OF BURGERS EQUATION USING A LATTICE BOLTZMANN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(2). DOI: 10.6052/0459-1879-1999-2-1995-016 |
1. |
杨一宏,盛建龙,叶祖洋,王楠,周文. 非均质多孔介质的地质熵与渗透特性关系研究. 力学学报. 2025(01): 273-282 .
![]() |