EI、Scopus 收录
中文核心期刊
Zhang Xiaoyu, Zhang Xuhui. Model and harvest characteristic research of piezoelectric energy harvester used in coal mine. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2239-2251. DOI: 10.6052/0459-1879-23-460
Citation: Zhang Xiaoyu, Zhang Xuhui. Model and harvest characteristic research of piezoelectric energy harvester used in coal mine. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2239-2251. DOI: 10.6052/0459-1879-23-460

MODEL AND HARVEST CHARACTERISTIC RESEARCH OF PIEZOELECTRIC ENERGY HARVESTER USED IN COAL MINE

  • Received Date: September 19, 2023
  • Accepted Date: October 07, 2023
  • Available Online: October 08, 2023
  • About the problem of difficult electricity supply for wireless monitoring node of exploiting coal machine,a piezoelectric energy harvester is used to convert the vibration energy into electricity,the research of energy harvest characteristic has scientific significance.Using experimental and data fitting method to establish restoring force model,using magnetization current method to establish magnetic force model,using the Lagrange function to establish dynamic model,using RecurDyn to extract the exploiting direction acceleration of roller and swing arm,the dynamic model is solved by using Runge Kutta method,analyzing energy harvest characteristic at different magnetic distances,conducting experimental research.The results show that it is subjected to exploiting direction acceleration of front roller,after roller,front swing arm and after swing arm,at the magnetic distance with great energy harvest characteristic,the voltage gradually decreases,the voltage increases entirely when the hardness of the coal seam increases,when exploiting f4 coal seam,the energy harvest characteristic are great at magnetic distances of 12 mm,16 mm,12 mm and 12 mm, the effective voltage values are 5.107 V,4.224 V,0.998 V and 0.882 V,when exploiting the f6 coal seam, the energy harvest characteristic are entirely great at magnetic distance of 16 mm,the effective voltage values are 7.298 V,6.747 V,1.592 V and1.397 V,the voltage increases when adding magnetic force.Through experimental research, it was found that it is subjected to exploiting direction acceleration of front roller when exploiting f4,f6 seam,the voltage increases when the hardness of coal seam increases at a magnetic distance with great energy harvest characteristic,the energy harvest characteristic are great at magnetic distances of 12 mm and 16 mm,the effective voltage values are 3.340 V and 4.959 V,the voltage increases when adding magnetic force,verifing the correctness of theoretical result.The research provides a theoretical basis for improving the voltage,providing idea for self electricity supply of wireless monitoring node.
  • [1]
    张伟, 刘爽, 毛佳佳等. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报, 2022, 54(4): 1102-1112 (Zhang Wei, Liu Shuang, Mao Jiajia, et al. Design and energy harvest characteristic of a magnetic coupled bistable broadband piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1102-1112 (in Chinese)

    Zhang Wei, Liu Shuang, Mao Jiajia, et al. Design and energy harvest characteristic of a magnetic coupled bistable broadband piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(04): 1102-1112(in Chinese))
    [2]
    张颖, 王伟, 曹军义. 多稳态俘能系统的准确磁力建模方法. 力学学报, 2021, 53(11): 2984-2995 (Zhang Ying, Wang Wei, Cao Junyi. Accurate magnetic modeling method for multistable energy harvest system. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2984-2995 (in Chinese)

    Zhang Ying, Wang Wei, Cao Junyi. Accurate magnetic modeling method for multistable energy harvest system. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2984-2995(in Chinese))
    [3]
    钱有华, 陈娅昵. 双稳态压电俘能器的簇发振荡与俘能效率分析. 力学学报, 2022, 54(11): 3157-3168 (Qian Youhua, Chen Yani. Analysis of cluster oscillation and energy harvest efficiency for bistable piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3157-3168 (in Chinese)

    Qian Youhua, Chen Yani. Analysis of cluster oscillation and energy harvest efficiency for bistable piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3157-3168(in Chinese))
    [4]
    曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析. 力学学报, 2019, 51(4): 1148-1155 (Cao Dongxing, Ma Hongbo, Zhang Wei. Analysis of flow induced vibration energy harvest characteristic for magnetic piezoelectric cantilever beam. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155 (in Chinese)

    Cao Dongxing, Ma Hongbo, Zhang Wei. Analysis of flow induced vibration energy harvest characteristic for magnetic piezoelectric cantilever beam. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(04): 1148-1155(in Chinese))
    [5]
    吴娟娟, 冷永刚, 乔海等. 窄带随机激励双稳压电悬臂梁响应机制与能量采集研究. 物理学报, 2018, 67(21): 79-95 (Wu Juanjuan, Leng Yonggang, Qiao Hai, et al. Research on response mechanism and energy harvest of bistable piezoelectric cantilever beam for narrowband random excitation. Acta Physica Sinica, 2018, 67(21): 79-95 (in Chinese)

    Wu Juanjuan, Leng Yonggang, Qiao Hai, et al. Research on response mechanism and energy harvest of bistable piezoelectric cantilever beam for narrowband random excitation. Acta Physica Sinica, 2018, 67(21): 79-95(in Chinese))
    [6]
    刘琦, 秦卫阳, 邓王蒸等. 惯性固支梁双稳态振动俘能系统设计与实验验证. 振动工程学报, 2022, 35(5): 1165-1173 (Liu Qi, Qin Weiyang, Deng Wangzheng, et al. Design and experimental verification of an inertial fixed beam bistable vibration energy harvest system. Journal of Vibration Engineering, 2022, 35(5): 1165-1173 (in Chinese)

    Liu Qi, Qin Weiyang, Deng Wangzheng, et al. Design and experimental verification of an inertial fixed beam bistable vibration energy harvest system. Journal of Vibration Engineering, 2022, 35(05): 1165-1173(in Chinese))
    [7]
    Liu Q, Qin W, Yang Y, et al. Harvesting weak vibration energy by amplified inertial force and multi-stable buckling piezoelectric structure. Mechanical Systems and Signal Processing, 2023, 189: 110125 doi: 10.1016/j.ymssp.2023.110125
    [8]
    马天兵, 贾世盛, 丁永静等. 梯形悬臂梁压电振动俘能器的特性研究. 仪表技术与传感器, 2021, 11: 43-47 (Ma Tianbing, Jia Shisheng, Ding Yongjing, et al. Research on the characteristic of a trapezoidal cantilever beam piezoelectric vibration energy harvester. Instrument Technique and Sensors, 2021, 11: 43-47 (in Chinese)

    Ma Tianbing, Jia Shisheng, Ding Yongjing, et al. Research on the characteristic of a trapezoidal cantilever beam piezoelectric vibration energy harvester. Instrument Technique and Sensors, 2021, (11): 43-47(in Chinese))
    [9]
    张忠华, 柴君凌, 阚君武等. 单磁耦合式压电振动俘能器的建模与试验. 中国机械工程, 2021, 32(19): 2288-2293, 2304 (Zhang Zhonghua, Chai Junling, Kan Junwu, et al. Modeling and testing of a single magnetic coupling piezoelectric vibration energy harvester. China Mechanical Engineering, 2021, 32(19): 2288-2293, 2304 (in Chinese)

    Zhang Zhonghua, Chai Junling, Kan Junwu, et al. Modeling and testing of a single magnetic coupling piezoelectric vibration energy harvester. China Mechanical Engineering, 2021, 32(19): 2288-2293 + 2304(in Chinese))
    [10]
    满大伟, 王建国. 非对称势阱对三稳态压电俘能器性能的影响分析. 应用力学学报, 2021, 38(1): 60-69 (Man Dawei, Wang Jianguo. Effecting analysis of asymmetric potential trap on the performance of tristable piezoelectric energy harvester. Chinese Journal of Applied Mechanics, 2021, 38(1): 60-69 (in Chinese)

    Man Dawei, Wang Jianguo. Effecting analysis of asymmetric potential trap on the performance of tristable piezoelectric energy harvester. Chinese Journal of Applied Mechanics, 2021, 38(01): 60-69(in Chinese))
    [11]
    满大伟, 王建国. 梁端磁铁尺寸对三稳态压电俘能器性能影响分析. 应用力学学报, 2020, 37(4): 1459-1467, 1854 (Man Dawei, Wang Jianguo. Effecting analysis of magnet size on the performance of tristable piezoelectric energy harvester. Chinese Journal of Applied Mechanics, 2020, 37(4): 1459-1467, 1854 (in Chinese)

    Man Dawei, Wang Jianguo. Effecting analysis of magnet size on the performance of tristable piezoelectric energy harvester. Chinese Journal of Applied Mechanics, 2020, 37(04): 1459-1467 + 1854(in Chinese))
    [12]
    满大伟, 王建国. 基于多尺度法双稳态压电俘能器动力特性分析. 应用力学学报, 2019, 36(1): 1-7, 249 (Man Dawei, Wang Jianguo. Analysis of dynamic characteristic for bistable piezoelectric energy harvester based on multi-scale method. Chinese Journal of Applied Mechanics, 2019, 36(1): 1-7, 249 (in Chinese)

    Man Dawei, Wang Jianguo. Analysis of dynamic characteristic for bistable piezoelectric energy harvester based on multi-scale method. Chinese Journal of Applied Mechanics, 2019, 36(01): 1-7 + 249(in Chinese))
    [13]
    李颍, 鞠洋, 谭江平等. 三稳态压电振动能量采集器的动力学建模、仿真与实验研究. 传感技术学报, 2020, 33(8): 1098-1109 (Li Ying, Ju Yang, Tan Jiangping, et al. Dynamic modeling, simulation, and experimental research of tristable piezoelectric vibration energy harvester. Chinese Journal of Sensors and Actuators, 2020, 33(8): 1098-1109 (in Chinese)

    Li Ying, Ju Yang, Tan Jiang, et al. Dynamic modeling, simulation, and experimental research of tristable piezoelectric vibration energy harvester. Chinese Journal of Sensors and Actuators, 2020, 33(08): 1098-1109(in Chinese))
    [14]
    张强, 石抗抗, 王海舰等. 基于压电俘能装置的刨刀受力检测系统. 煤炭科学技术, 2017, 45(2): 136-140 (Zhang Qiang, Shi Kangkang, Wang Haijian, et al. The force detection system for plane irons based on piezoelectric energy harvest device. Coal Science and Technology, 2017, 45(2): 136-140 (in Chinese)

    Zhang Qiang, Shi Kangkang, Wang Haijian, et al. The force detection system for plane irons based on piezoelectric energy harvest device. Coal Science and Technology, 2017, 45(02): 136-140(in Chinese))
    [15]
    张强, 石抗抗, 王海舰等. 基于压电振动俘能装置的采煤机滚筒扭矩检测系统. 中国机械工程, 2016, 27(20): 2785-2790 (Zhang Qiang, Shi Kangkang, Wang Haijian, et al. The torque detection system for mining coal machine's roller based on piezoelectric vibration energy harvest device. China Mechanical Engineering, 2016, 27(20): 2785-2790 (in Chinese)

    Zhang Qiang, Shi Kangkang, Wang Haijian, et al. The torque detection system for mining coal machine's roller based on piezoelectric vibration energy harvest device. China Mechanical Engineering, 2016, 27(20): 2785-2790(in Chinese))
    [16]
    张强, 王海舰, 毛君等. 基于压电振动俘能的自供电刮板输送机张力检测系统. 传感技术学报, 2015, 28(9): 1335-1340 (Zhang Qiang, Wang Haijian, Mao Jun, et al. The tension detection system for self powered scraper conveyor based on piezoelectric vibration energy harvester. Chinese Journal of Sensors and Actuators, 2015, 28(9): 1335-1340 (in Chinese)

    Zhang Qiang, Wang Haijian, Mao Jun, et al. The tension detection system for self powered scraper conveyor based on piezoelectric vibration energy harvester. Chinese Journal of Sensors and Actuators, 2015, 28(09): 1335-1340(in Chinese))
    [17]
    Xie Z, Zhou S, Xiong J, et al. The benefits of a magnetically coupled asymmetric monostable dual-cantilever energy harvester under random excitation. Journal of Intelligent Material Systems and Structures, 2019, 30(20): 3136-3145 doi: 10.1177/1045389X19879999
    [18]
    Chen K, Zhang X, Xiang X, et al. High performance piezoelectric energy harvester with dual-coupling beams and bistable configurations. Journal of Sound and Vibration, 2023, 561: 117822 doi: 10.1016/j.jsv.2023.117822
    [19]
    赵丽娟, 王雅东, 张美晨等. 复杂煤层条件下采煤机自适应截割控制策略. 煤炭学报, 2022, 47(1): 541-563 (Zhao Lijuan, Wang Yadong, Zhang Meichen, et al. A adaptive mining control strategy for mining coal machine under complex coal seam condition. Journal of China Coal Society, 2022, 47(1): 541-563 (in Chinese)

    Zhao Lijuan, Wang Yadong, Zhang Meichen, et al. A adaptive mining control strategy for mining coal machine under complex coal seam condition. Journal of China Coal Society, 2022, 47(01): 541-563(in Chinese))
    [20]
    张美晨, 赵丽娟, 王雅东. 基于CPS感知分析的煤岩截割状态识别系统. 煤炭学报, 2021, 46(12): 4071-4087 (Zhang Meichen, Zhao Lijuan, Wang Yadong. A coal rock mining state recognition system based on CPS perception analysis. Journal of China Coal Society, 2021, 46(12): 4071-4087 (in Chinese)

    Zhang Meichen, Zhao Lijuan, Wang Yadong. A coal rock mining state recognition system based on CPS perception analysis. Journal of China Coal Society, 2021, 46(12): 4071-4087(in Chinese))
    [21]
    张美晨, 赵丽娟, 李明昊等. 基于双向耦合法的采煤机螺旋滚筒振动特性分析及实验研究. 煤炭科学技术, 2023, 出版中

    Zhang Meichen, Zhao Lijuan, Li Minghao, et al. Analysis and experimental research on the vibration characteristic of the spiral roller of mining coal machine based on bidirectional coupling method. Coal Science and Technology, 2023, in press (in Chinese)
    [22]
    Xia G, Kang X, Lim C, et al. Parametric excitation analysis for system performance of piezoelectric energy harvesters. Applied Mathematical Modelling, 2023, 121: 321-338 doi: 10.1016/j.apm.2023.05.003
    [23]
    张宇, 汪权. 磁力双稳态压电悬臂梁俘能器的非线性振动特性研究. 计算力学学报, 2017, 34(6): 725-731 (Zhang Yu, Wang Quan. Nonlinear vibration characteristic of magnetic bistable piezoelectric cantilever beam energy harvester. Chinese Journal of Computational Mechanics, 2017, 34(6): 725-731 (in Chinese)

    Zhang Yu, Wang Quan. Nonlinear vibration characteristic of magnetic bistable piezoelectric cantilever beam energy harvester. Chinese Journal of Computational Mechanics, 2017, 34(06): 725-731(in Chinese))
    [24]
    张广义, 金磊, 高世桥等. 双端固支梯形梁压电俘能器机电耦合模型与试验分析. 北京理工大学学报, 2018, 38(6): 600-605 (Zhang Guangyi, Jin Lei, Gao Shiqiao, et al. Electromechanical coupling model and experimental analysis of a double end fixed trapezoidal beam piezoelectric energy harvester. Transactions of Beijing Institute of Technology, 2018, 38(6): 600-605 (in Chinese)

    Zhang Guangyi, Jin Lei, Gao Shiqiao, et al. Electromechanical coupling model and experimental analysis of a double end fixed trapezoidal beam piezoelectric energy harvester. Transactions of Beijing Institute of Technology, 2018, 38(06): 600-605(in Chinese))
    [25]
    Lu Q, Liu L, Scarpa F, et al. A novel composite multi-layer piezoelectric energy harvester. Composite Structures, 2018, 201: 121-130 doi: 10.1016/j.compstruct.2018.06.024
    [26]
    高扬, 穆继亮, 何剑等. 煤机设备无线自供电状态监测系统. 机械工程学报, 2020, 56(13): 41-49 (GaoYang, Mu Jiliang, He Jian, et al. Wireless self power supply status monitoring system for mining coal machine. Journal of Mechanical Engineering, 2020, 56(13): 41-49 (in Chinese) doi: 10.3901/JME.2020.13.041

    GaoYang, Mu Jiliang, He Jian, et al. Wireless self power supply status monitoring system for mining coal machine. Journal of Mechanical Engineering, 2020, 56(13): 41-49(in Chinese)) doi: 10.3901/JME.2020.13.041
    [27]
    刘建政, 王泽坤, 郝聪聪. 矿用自供电多节点无线传感监测系统. 测试技术学报, 2022, 36(6): 518-524 (Liu Jianzheng, Wang Zekun, Hao Congcong. Self power multi node wireless sensor monitoring system used in coal mine. Journal of Test And Measurement Technology, 2022, 36(6): 518-524 (in Chinese) doi: 10.3969/j.issn.1671-7449.2022.06.009

    Liu Jianzheng, Wang Zekun, Hao Congcong. Self power multi node wireless sensor monitoring system used in coal mine. Journal of Test And Measurement Technology, 2022, 36(06): 518-524(in Chinese)) doi: 10.3969/j.issn.1671-7449.2022.06.009
    [28]
    解胜东. 用于煤机装备无线自供能检测系统的压电叠堆俘能器研究. [硕士论文]. 太原: 太原理工大学, 2018

    Xie Shengdong. Research on piezoelectric stack energy harvester for wireless self power detection system in mining coal machine. [Master Thesis]. Taiyuan: Taiyuan University of Technology, 2018 (in Chinese))
    [29]
    Ding J, Lu M, Deng A, et al. A piezoelectric energy harvester using an arc-shaped piezoelectric cantilever beam array. Microsystem Technologies, 2011, 28(8): 1947-1958
    [30]
    Yang Z, Wang Y, Zuo L, et al. Introducing arc-shaped piezoelectric elements into energy harvesters. Energy Conversion and Management, 2017, 148: 260-266 doi: 10.1016/j.enconman.2017.05.073
    [31]
    王铎, 孙毅, 程靳. 理论力学. 北京: 高等教育出版社, 2016

    Wang Duo, Sun Yi, Cheng Jin. Theoretical Mechanics. Beijing: Higher Education Press, 2016 (in Chinese))
    [32]
    王光庆, 崔素娟, 武海强等. 多稳态压电振动能量采集器的动力学模型及其特性分析. 振动工程学报, 2019, 32(2): 252-263 (Wang Guangqing, Cui Sujuan, Wu Haiqiang, et al. Dynamic model and characteristic analysis of a multi-stable piezoelectric vibration energy harvester. Journal of Vibration Engineering, 2019, 32(2): 252-263 (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2019.02.008

    Wang Guangqing, Cui Sujuan, Wu Haiqiang, et al. Dynamic model and characteristic analysis of a multi-stable piezoelectric vibration energy harvester. Journal of Vibration Engineering, 2019, 32(02): 252-263(in Chinese)) doi: 10.16385/j.cnki.issn.1004-4523.2019.02.008
    [33]
    孙伟, 齐飞, 韩清凯. 基于自由振动衰减信号包络线法辨识硬涂层复合结构的阻尼特性. 振动与冲击, 2013, 32(12): 50-54 (Sun Wei, Qi Fei, Han Qingkai. Identification of damping characteristic of hard coated composite structure based on free vibration attenuation signal envelope method. Journal of Vibration and Shock, 2013, 32(12): 50-54 (in Chinese) doi: 10.13465/j.cnki.jvs.2013.12.011

    Sun Wei, Qi Fei, Han Qingkai. Identification of damping characteristic of hard coated composite structure based on free vibration attenuation signal envelope method. Journal of Vibration and Shock, 2013, 32(12): 50-54(in Chinese)) doi: 10.13465/j.cnki.jvs.2013.12.011
  • Related Articles

    [1]Xing Haoyun, Liu Zhuo, Wang Qiu, Zhao Wei, Gao Liangjie, Liu Zhongchen, Qian Zhansen. RESEARCH ON PARTICLE MOTION CHARACTERISTICS UNDER HYPERSONIC MARS ENTRY ENVIRONMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1451-1462. DOI: 10.6052/0459-1879-23-192
    [2]Guo Shuaiqi, Liu Wen, Zhang Chen’an, Wang Famin. DESIGN AND OPTIMIZATION FOR HYPERSONIC CONE-DERIVED WAVERIDER WITH BLUNTED LEADING-EDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1414-1428. DOI: 10.6052/0459-1879-21-611
    [3]Li Yixiang, Wang Qiu, Luo Kai, Li Jinping, Zhao Wei. THEORETICAL ANALYSIS ON HYPERSONIC MHD SHOCK STAND-OFF DISTANCE OF BLUNT BODY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2493-2500. DOI: 10.6052/0459-1879-21-127
    [4]Ye Kun, Ye Zhengyin, Qu Zhan, Wu Xiaojin, Zhang Weiwei. UNCERTAINTY AND GLOBAL SENSITIVITY ANALYSIS OF HYPERSONIC CONTROL SURFACE AEROTHERMOELASTIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 278-289. DOI: 10.6052/0459-1879-14-406
    [5]Jiang Zenghui, Song Wei, Chen Nong. HYPERSONIC WIND TUNNEL FREE-FLIGHT TEST WITH BIPLANAR OPTICAL SYSTEM ON THE NON-SPINNING BLUNT CONE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 406-413. DOI: 10.6052/0459-1879-14-332
    [6]Zhu Dehua, Yuan Xiangjiang, Shen Qing, Chen Lin. NUMERICAL SIMULATION AND MECHANISM ANALYSIS OF HYPERSONIC ROUGHNESS INDUCED TRANSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 381-388. DOI: 10.6052/0459-1879-14-217
    [7]Zhu Dehua, Shen Qing, Wang Qiang, Yuan Xiangjiang. NUMERICAL STUDY OF THE STABILITY OF HYPERSONIC BASE FLOW OVER A BLUNT BODY AND APOLLO COMMAND MODULE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 465-472. DOI: 10.6052/0459-1879-2012-3-20120301
    [8]Jing Pan, Chao Yan, Yunfei Geng, Jie Wu. New conception of aerothermal protection for hypersonic vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 383-388. DOI: 10.6052/0459-1879-2010-3-2008-334
    [9]Qing Shen, Dehua Zhu. Numerical study of the stability of hypersonic wake[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 1-7. DOI: 10.6052/0459-1879-2009-1-2008-249
    [10]Zuowu Li. Study on the dissipative effect of approximate riemann solver on hypersonic heatflux simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 19-25. DOI: 10.6052/0459-1879-2008-1-2006-359
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (496) PDF downloads (102) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return