EI、Scopus 收录
中文核心期刊
Shi Lingling, Xiao Xiaolong, Zhang Xiaofeng, Fan Lijia, Shan Minghe, Tian Qiang. Control and ground experiment of docking force for multi-module unit assembly in orbit by space robots. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 800-816. DOI: 10.6052/0459-1879-23-458
Citation: Shi Lingling, Xiao Xiaolong, Zhang Xiaofeng, Fan Lijia, Shan Minghe, Tian Qiang. Control and ground experiment of docking force for multi-module unit assembly in orbit by space robots. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 800-816. DOI: 10.6052/0459-1879-23-458

CONTROL AND GROUND EXPERIMENT OF DOCKING FORCE FOR MULTI-MODULE UNIT ASSEMBLY IN ORBIT BY SPACE ROBOTS

  • Received Date: September 18, 2023
  • Accepted Date: December 21, 2023
  • Available Online: December 22, 2023
  • Published Date: December 22, 2023
  • It is a promising way to construct large-scale space structures, such as large antennas or space telescopes after the modular units of space structures are launched in a stacked manner and then assembled in orbit by space robots. However, there exist the following problems that have to be considered or solved for a successful task in the process of space robot on-orbit assembly of space structure module units, including dynamic models regarding the free-flying space robots and the complex contact scenario, difficult control of docking force/torques considering different docking scenarios, and substantial uncertain interference during the docking process. Given the above difficulties, this paper analyzes the on-orbit assembly contact scenario of multi-module units, builds the dynamic model of space robot for on-orbit assembly tasks and addresses the three-dimensional space contact dynamic model. Further, the authors adopt an adaptive impedance control method based on a reference model to control the docking forces. This method adjusts the compliance trajectory in real-time according to the force tracking error value to adapt to complex working conditions and resist external interference so that the contact force can accurately track the expected value, thereby ensuring the successful docking of module units and avoiding damage to the mechanical structure caused by physical contact. A simulation platform is constructed to numerically verify the modeling and control methods regarding to the whole in-orbit assembly process. Then ground experiment platforms are established to validate the dynamic model of the free-flying space robot and force control method of the space robot during its assembly process. The experimental results show that the adaptive impedance control method still presents good force control performance and environmental adaptability in complex contact scenarios where single-module units or multi-module units are synchronously docked. This method can be applied to force control in the on-orbit assembly process of space large-scale structures such as (super) large-aperture space optical combination mirror group.
  • [1]
    Lillie CF. On-orbit assembly and servicing of future space observatories//Space Telescopes and Instrumentation I: Optical, Infrared, and Millimete. Orlando, FL, USA, 2006: 767-778
    [2]
    Dorsey J, Watson J. Space assembly of large structural system architectures (SALSSA)//AIAA Space, Long Beach, California. 2016: 5481
    [3]
    Nishida S, Yoshikawa T. A new end-effector for on-orbit assembly of a large reflector//IEEE 9th International Conference on Control, Automation, Robotics and Vision, Singapore. 2006: 1-6
    [4]
    Hoyt RP. SpiderFab: An architecture for self-fabricating space systems//AIAA Space 2013 Conference and Exposition, San Diego, CA, USA. 2013: 5509
    [5]
    梁斌, 徐文福, 李成等. 地球静止轨道在轨服务技术研究现状与发展趋势. 宇航学报, 2010, 1: 1-13 (Liang Bin, Xu Wenfu, LI Cheng, et al. The status and prospect of orbital servicing in the geostationary orbit. Journal of Astronautics, 2010, 1: 1-13 (in Chinese)

    Liang Bin, Xu Wenfu, LI Cheng, et al. The status and prospect of orbital servicing in the geostationary orbit. Journal of Astronautics, 2010, 1: 1-13 (in Chinese)
    [6]
    Belvin WK, Doggett WR, Watson JJ, et al. In-space structural assembly: Applications and technology//3rd AIAA Spacecraft Structures Conference, San Diego, California, USA. 2016: 2163
    [7]
    Patane S, Joyce ER, Snyder MP, et al. Archinaut: In-space manufacturing and assembly for next-generation space habitats//AIAA Space and Astronautics Forum and Exposition, Orlando, FL, USA. 2017: 5227
    [8]
    Coll GT, Webster GK, Pankiewicz OK, et al. NASA’s exploration and in-space services (NExIS) division OSAM-1 propellant transfer subsystem progress 2020//AIAA Propulsion and Energy Forum, 2020
    [9]
    Mcelwain MW, Feinberg LD, Kimble RA, et al. The james webb space telescope mission status//SPIE Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave: Vol 12180, Montréal, Québec, Canada. SPIE, 2022: 228-240
    [10]
    Roa Garzon MA, Koch C, Rognant M, et al. PULSAR: Testing the technologies for on-orbit assembly of a large telescope//16th Symposium on Advanced Space Technologies in Robotics and Automation, ASTRA 2022. ESA 2022
    [11]
    孟光, 韩亮亮, 张崇峰. 空间机器人研究进展及技术挑战. 航空学报, 2021, 42(1): 523963 (Meng Guang, Han Liangliang, Zhang Chongfeng. Research progress and technical challenges of space robot. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523963 (in Chinese)

    Meng Guang, Han Liangliang, Zhang Chongfeng. Research progress and technical challenges of space robot. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523963 (in Chinese)
    [12]
    Jefferies SA, Arney DC, Jones CA, et al. Impacts of in-space assembly as applied to human exploration architectures//AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA. 2018: 5306
    [13]
    李大明, 饶炜, 胡成威等. 空间站机械臂关键技术研究. 载人航天, 2014, 20(3): 238-242 (Li Daming, Rao Wei, Hu Chengwei, et al. Key technology review of the research on the space station manipulator. Manned Spaceflight, 2014, 20(3): 238-242 (in Chinese)

    Li Daming, Rao Wei, Hu Chengwei, et al. Key technology review of the research on the space station manipulator. Manned Spaceflight, 2014, 20(3): 238-242 (in Chinese)
    [14]
    刘宏, 刘冬雨, 蒋再男. 空间机械臂技术综述及展望. 航空学报, 2021, 42(1): 33-46 (Liu Hong, Liu Dongyu, Jiang Zainan. Space manipulator technology: Review and prospect. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 33-46 (in Chinese)

    Liu Hong, Liu Dongyu, Jiang Zainan. Space manipulator technology: Review and prospect. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 33-46 (in Chinese)
    [15]
    薛智慧, 刘金国. 空间机械臂操控技术研究综述. 机器人, 2022, 44(1): 107-128 (Xue Zhihui, Liu Jinguo. Review of space manipulator control technologies. Robot, 2022, 44(1): 107-128 (in Chinese)

    Xue Zhihui, Liu Jinguo. Review of space manipulator control technologies. Robot, 2022, 44(1): 107-128 (in Chinese)
    [16]
    贾庆轩, 张龙, 陈钢等. 多目标融合的冗余空间机械臂碰前轨迹优化. 宇航学报, 2014, 35(6): 639-647 (Jia Qingxuan, Zhang Long, Chen Gang, et al. Pre-impact trajectory optimization of redundant space manipulator with multi-target fusion. Journal of Astronautics, 2014, 35(6): 639-647 (in Chinese)

    Jia Qingxuan, Zhang Long, Chen Gang, et al. Pre-impact trajectory optimization of redundant space manipulator with multi-target fusion. Journal of Astronautics, 2014, 35(6): 639-647 (in Chinese)
    [17]
    Jiao C, Liang B, Wang X. Adaptive reaction null-space control of dual-arm space robot for post-capture of non-cooperative target//29th Chinese Control and Decision Conference (CCDC), Chongqing, China. IEEE, 2017: 531-537
    [18]
    杨胜丽, 吴志刚, 孟得山等. 机器人在轨组装结构的耦合动力学与步态优化. 力学学报, 2023, 55: 1-11 (Yang Shengli, Wu Zhigang, Meng Deshan, et al. Coupled dynamics and gait optimization of the spatial structure of robot walking assembly. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55: 1-11 (in Chinese)

    Yang Shengli, Wu Zhigang, Meng Deshan, et al. Coupled dynamics and gait optimization of the spatial structure of robot walking assembly. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55: 1-11 (in Chinese)
    [19]
    Boning P, Dubowsky S. Coordinated control of space robot teams for the on-orbit construction of large flexible space structures. Advanced Robotics, 2010, 24(3): 303-323 doi: 10.1163/016918609X12619993300665
    [20]
    樊茂, 汤亮. 空间机器人抓捕碰撞分析与轨迹规划镇定控制. 宇航学报, 2021, 42(10): 1305 (Fan Mao, Tang Liang. Impact analysis and trajectory planning stabilization control for space robot after capturing target. Journal of Astronautics, 2021, 42(10): 1305 (in Chinese)

    Fan Mao, Tang Liang. Impact analysis and trajectory planning stabilization control for space robot after capturing target. Journal of Astronautics, 2021, 42(10): 1305 (in Chinese)
    [21]
    Flores-Abad A, Crain A, Nandayapa M, et al. Disturbance observer-based impedance control for a compliance capture of an object in space//AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, USA. 2018: 1329
    [22]
    陶东, 张强, 赵良玉. 模型不确定的空间机器人无力传感器阻抗控制方法. 宇航学报, 2021, 42(6): 766 (Tao Dong, Zhang Qiang, Zhao Liangyu. Force sensorless impedance control for a space robot with dynamic uncertainty. Journal of Astronautics, 2021, 42(6): 766 (in Chinese)

    Tao Dong, Zhang Qiang, Zhao Liangyu. Force sensorless impedance control for a space robot with dynamic uncertainty. Journal of Astronautics, 2021, 42(6): 766 (in Chinese)
    [23]
    朱安, 陈力. 基于有限时间收敛的双臂空间机器人捕获卫星主动对接力/位姿阻抗控制. 力学学报, 2022, 54(10): 2861-2873 (Zhu An, Chen Li. Active docking operation of dual-arm space robot capture satellite force/posture impedance control based on finitetime convergent. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2861-2873 (in Chinese)

    Zhu An, Chen Li. Active docking operation of dual-arm space robot capture satellite force/posture impedance control based on finitetime convergent. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2861-2873 (in Chinese)
    [24]
    Shi L, Xiao X, Shan M, et al. Force control of a space robot in on-orbit servicing operation. Acta Astronautica, 2022, 193: 469-482 doi: 10.1016/j.actaastro.2022.01.015
    [25]
    Shi L, Katupitiya J, Kinkaid N. Hybrid control of space robot in on-orbit screw-driving operation. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1253-1264 doi: 10.1109/TAES.2017.2780558
    [26]
    邓启文, 韦庆. 自由飘浮空间机器人地面实验系统. 宇航学报, 2010, 12: 2807-2812 (Deng Qiwen, Wei Qing. A ground experimental system for free-floating space robot. Journal of Astronautics, 2010, 12: 2807-2812 (in Chinese)

    Deng Qiwen, Wei Qing. A ground experimental system for free-floating space robot. Journal of Astronautics, 2010, 12: 2807-2812 (in Chinese)
    [27]
    田大可, 范小东, 郑夕健等. 空间可展开天线微重力环境模拟研究现状与展望. 机械工程学报, 2021, 57(3): 11-25 (Tian Dake, Fan Xiaodong, Zheng Xijian, et al. Research status and prospect of micro-gravity environment simulation for space deployable antenna. Journal of Mechanical Engineering, 2021, 57(3): 11-25 (in Chinese) doi: 10.3901/JME.2021.03.011

    Tian Dake, Fan Xiaodong, Zheng Xijian, et al. Research status and prospect of micro-gravity environment simulation for space deployable antenna. Journal of Mechanical Engineering, 2021, 57(3): 11-25 (in Chinese) doi: 10.3901/JME.2021.03.011
    [28]
    许剑, 任迪, 杨庆俊等. 五自由度气浮仿真试验台的动力学建模. 宇航学报, 2010, 1: 60-64 (Xu Jian, Ren Di, Yang Qingjun, et al. Dynamic modeling for the 5-DoF air bearing spacecraft simulator. Journal of Astronautics, 2010, 1: 60-64 (in Chinese)

    Xu Jian, Ren Di, Yang Qingjun, et al. Dynamic modeling for the 5-DoF air bearing spacecraft simulator. Journal of Astronautics, 2010, 1: 60-64 (in Chinese)
    [29]
    Kang JJ, Zhu ZH, Santaguida LF. Analytical and experimental investigation of stabilizing rotating uncooperative target by tethered space tug. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2426-2437 doi: 10.1109/TAES.2021.3061798
    [30]
    Medzmariashvili N, Medzmariashvili E, Tsignadze N, et al. Possible options for jointly deploying a ring provided with V-fold bars and a flexible pre-stressed center. CEAS Space Journal, 2013, 5: 203-210 doi: 10.1007/s12567-013-0037-6
    [31]
    Wei ZT, Wen H, Hu HY, et al. Ground experiment on rendezvous and docking with a spinning target using multistage control strategy. Aerospace Science and Technology, 2020, 104: 105967 doi: 10.1016/j.ast.2020.105967
    [32]
    周诚. 空间机器人目标捕获的自主控制策略研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2019 (Zhou Cheng. Research on autonomous control strategy of space robot for target capturing. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)

    Zhou Cheng. Research on autonomous control strategy of space robot for target capturing. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
    [33]
    He J, Shen MJ, Gao F, et al. Active compliance control of a position-controlled industrial robot for simulating space operations. Chinese Journal of Mechanical Engineering, 2022, 35(1): 1-14 doi: 10.1186/s10033-021-00666-0
    [34]
    马小良. 基于自适应阻抗控制的并联机器人柔顺控制研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学机电工程学院, 2009 (Ma Xiaoliang. Research on compliant control of parallel manipulator based on adaptive impedance control. [Master Thesis]. Harbin: Harbin Institute of Technology, 2009 (in Chinese)

    Ma Xiaoliang. Research on compliant control of parallel manipulator based on adaptive impedance control. [Master Thesis]. Harbin: Harbin Institute of Technology, 2009 (in Chinese)
    [35]
    Seraji H. Adaptive admittance control: An approach to explicit force control in compliant motion//Proceedings of 1994 IEEE International Conference on Robotics and Automation. IEEE, 1994: 2705-2712
  • Related Articles

    [1]Li Xiaojun, Zhang Xun, Xing Haojie. A TRANSMITTING BOUNDARY WITH TIME-VARYING COMPUTATIONAL ARTIFICIAL WAVE VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2924-2935. DOI: 10.6052/0459-1879-24-178
    [2]Wang Piguang, Lu Ranran, Yan Qiushi, Li Shutao, Du Xiuli. AN INPUT METHOD FOR EXPLOSION PROBLEMS BASED ON THE ACOUSTIC SUBSTRUCTURE OF EXPLOSION SOURCE UNDER UNDERWATER EXPLOSIVE LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 915-924. DOI: 10.6052/0459-1879-22-450
    [3]Xing Haojie, Li Xiaojun, Liu Aiwen, Li Hongjing, Zhou Zhenghua, Chen Su. EXTRAPOLATION-TYPE ARTIFICIAL BOUNDARY CONDITIONS IN THE NUMERICAL SIMULATION OF WAVE MOTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1480-1495. DOI: 10.6052/0459-1879-20-408
    [4]Wu Lihua, Zhao Mi, Du Xiuli. A TIME-DOMAIN ARTIFICIAL BOUNDARY CONDITION FOR VECTOR WAVE IN MULTILAYERED WAVEGUIDE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 554-567. DOI: 10.6052/0459-1879-20-213
    [5]Li Shutao, Liu Jingbo, Bao Xin. IMPROVEMENT OF EXPLICIT ALGORITHMS STABILITY WITH VISCO-ELASTIC ARTIFICIAL BOUNDARY ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1838-1849. DOI: 10.6052/0459-1879-20-224
    [6]Liu Jingbo, Bao Xin, Tan Hui, Wang Jianping, Guo Dong. DYNAMICAL ARTIFICIAL BOUNDARY FOR FLUID MEDIUM IN WAVE MOTION PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1418-1427. DOI: 10.6052/0459-1879-17-199
    [7]Zhang Xiaolong, Li Xiaojun, Chen Guoxing, Zhou Zhenghua. AN IMPROVED METHOD OF THE CALCULATION OF EQUIVALENT NODAL FORCES IN VISCOUS-ELASTIC ARTIFICIAL BOUNDARY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1126-1135. DOI: 10.6052/0459-1879-16-070
    [8]Viscous-spring dynamical artificial boundary for saturated porous media[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 605-611. DOI: 10.6052/0459-1879-2006-5-2005-403
    [9]A stress artificial boundary in FEA for near-field wave problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 49-56. DOI: 10.6052/0459-1879-2006-1-2004-442
    [10]A METHOD FOR THE STABILITY ANALYSIS OF LOCAL ARTIFICIAL BOUNDARIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(3): 376-380. DOI: 10.6052/0459-1879-1996-3-1995-344
  • Cited by

    Periodical cited type(45)

    1. 井渭彪,王展,景立平,齐文浩. 粘弹性边界输入及大直径隧道地震反应数值模拟. 地震科学进展. 2025(03): 125-134 .
    2. 柳国环,费琦翔. 边界-土-多跨桥梁系统的分区独立内部子结构地震波输入法及验证. 中国公路学报. 2025(03): 331-342 .
    3. 王飞,刘云贺,李虎,薛炳,牟猷,宋志强. 基于FEM-IBIEM的河谷坝址地震动输入方法及地震动场模拟研究. 振动与冲击. 2025(06): 244-253 .
    4. 梁建文,陈慧芳,李东桥,巴振宁. 地下管廊抗震研究现状综述. 天津大学学报(自然科学与工程技术版). 2024(02): 209-222 .
    5. 潘玉华,王翠坤,时继瑞,陈才华,邱盛源,马明,崔明哲,董皓. 考虑土-结构相互作用的超高层结构地震非线性分析. 建筑结构学报. 2024(06): 25-38 .
    6. 王昴,韦芳芳,杨晶晶,王永泉. 地震动多角度斜入射下无压隧洞地震响应分析. 河南科学. 2024(04): 567-577 .
    7. 刘书序,胡进军. 远海岛礁与场地地震反应研究现状. 世界地震工程. 2024(02): 136-147 .
    8. 陈凌宇. 考虑子盆地影响的二维盆地非线性地震反应研究. 江苏建筑. 2024(05): 23-25+50 .
    9. 刘又恺,梁建文,巴振宁,王永光,马英. 斜入射地震波作用下非基岩场地核电结构地震响应. 地震工程与工程振动. 2024(06): 102-116 .
    10. 黄德龙,王惠跃,岑航,宗钟凌,刘强,汤爱平,陶夏新. 基于SV波斜入射水平非一致场管廊动力响应研究. 振动与冲击. 2024(24): 190-203 .
    11. 王丕光,卢冉冉,闫秋实,李述涛,杜修力. 水下爆炸作用下基于声学的爆源子结构输入方法. 力学学报. 2023(04): 915-924 . 本站查看
    12. 王展,景立平,陆新宇,齐文浩. 粘弹性人工边界单元及地震动输入方法比较研究. 世界地震工程. 2023(02): 167-177 .
    13. 沈欣茹,郝冰,李远东,陈珍,周正华. 河谷地形对地震动的影响分析. 地震学报. 2023(04): 706-716 .
    14. 张小玲,徐英铎,王丕光,吴洁琼. 端承桩-土动力相互作用的频域子结构分析方法. 防灾减灾工程学报. 2023(04): 701-711 .
    15. 侯世伟,高广亮,张皓,孟素云,曲金红. 螺旋锚复合基础对村镇生土建筑抗震性能影响研究. 防灾减灾工程学报. 2023(04): 778-786+796 .
    16. 张佳文,李明超,韩帅,闫文钰,张敬宜. 非一致地震作用下高坝-复杂地基体系动力响应分析. 水利学报. 2023(09): 1099-1110+1121 .
    17. 张佳文,李明超,韩帅,闫文钰. 基于波场分离的不规则地形下地震波输入方法. 工程力学. 2023(11): 69-80+109 .
    18. 宝鑫,刘晶波,李述涛,王菲. 基于混合波场地震动输入技术的近海场地地震反应分析方法. 地震学报. 2022(01): 5-14 .
    19. 胡烨之,翟秋,张雅琪,卢昌红. 粘弹性边界及地震动输入在ABAQUS中的实现. 江淮水利科技. 2022(05): 5-9 .
    20. Xin Bao,Jingbo Liu,Hui Tan,Shutao Li,Fei Wang. A comparative analysis of seismic response of shallow buried underground structure under incident P, SV and Rayleigh waves. Earthquake Research Advances. 2022(04): 72-78 .
    21. 谷音,蔡亮. 基于分离式近场地基模型的土-曲线梁桥非一致地震反应分析方法研究. 地震工程与工程振动. 2021(02): 53-64 .
    22. 宝鑫,刘晶波,李述涛,王菲. 土-结构相互作用对储液结构动力反应的影响研究. 工程力学. 2021(S1): 125-132 .
    23. 吴雪,周兴龙,钟瑞,赵才友. 时速350 km高速列车下穿机场对跑道区道面的影响. 铁道建筑. 2021(08): 154-158 .
    24. 戴江力. 基于等效一致边界的重力坝地震响应分析. 水利科技与经济. 2021(08): 73-75+80 .
    25. 李述涛,宝鑫,刘晶波,陈叶青. 基于爆源子结构的爆炸问题多尺度分析方法. 振动与冲击. 2021(20): 63-72 .
    26. 魏奇科,韩亮,王振强,冯立,陈志雄. 双仓地下管廊抗震性能振动台试验研究. 防灾减灾工程学报. 2021(05): 1052-1061 .
    27. 董杰,王雨田,胡晶,孙保安,汪卫华,白海洋. 非晶合金剪切带动力学行为研究. 力学学报. 2020(02): 379-391 . 本站查看
    28. 刘晶波,宝鑫,李述涛,赵启明,王菲,王东洋. 考虑潟湖影响的岛礁场地地震反应分析. 计算机辅助工程. 2020(02): 46-50+69 .
    29. 王立安,赵建昌,杨华中. 饱和多孔地基与矩形板动力相互作用的非轴对称混合边值问题. 力学学报. 2020(04): 1189-1198 . 本站查看
    30. 刘晶波,宝鑫,谭辉,王东洋,李述涛. 土-结构动力相互作用分析中基于内部子结构的地震波动输入方法. 土木工程学报. 2020(08): 87-96 .
    31. 刘晶波,宋可,宝鑫,谷音,王建平,郭东. 强震作用下钢筋混凝土灯塔结构破坏模式研究. 自然灾害学报. 2020(04): 83-91 .
    32. 李述涛,刘晶波,宝鑫,贾艺凡,陈一村,肖兰. 人工边界子结构地震动输入方法在ABAQUS中的实现. 自然灾害学报. 2020(04): 133-141 .
    33. 宝鑫,刘晶波,王东洋,李述涛,王菲. 局部成层的海域岛礁场地地震反应分析. 振动与冲击. 2020(21): 55-64 .
    34. 李述涛,刘晶波,宝鑫. 采用黏弹性人工边界单元时显式算法稳定性的改善研究. 力学学报. 2020(06): 1838-1849 . 本站查看
    35. 陈少林,柯小飞,张洪翔. 海洋地震工程流固耦合问题统一计算框架. 力学学报. 2019(02): 594-606 . 本站查看
    36. 董正方,师成力,王君杰,曾繁凯. 重力对土体中地下结构地震反应的影响. 隧道建设(中英文). 2019(04): 576-583 .
    37. 芮珍梅,陈建兵. 加性非平稳激励下结构速度响应的FPK方程降维. 力学学报. 2019(03): 922-931 . 本站查看
    38. 宝鑫,刘晶波,王东洋,王建平,郭东,宋可. P波垂直入射下海域岛礁场地动力反应分析. 工程力学. 2019(S1): 1-7 .
    39. 白建方,马立龙. Rayleigh波场的数值模拟及其应用. 震灾防御技术. 2019(02): 328-340 .
    40. 何卫平,熊堃,卢晓春. 确定性地震动空间差异对重力坝地震响应影响研究. 水利学报. 2019(08): 913-924 .
    41. 陈少林,程书林,柯小飞. 海洋地震工程流固耦合问题统一计算框架——不规则界面情形. 力学学报. 2019(05): 1517-1529 . 本站查看
    42. 胡丹,张开银,孙亮,李芬,张磊. 饱和多孔介质中外源振动输入方法的研究. 华南理工大学学报(自然科学版). 2019(11): 140-146 .
    43. 柴瑞帅. 地震波动强度变化的数学建模分析与仿真. 地震工程学报. 2018(03): 549-554 .
    44. 胡丹,李芬,张开银. 饱和土–结构动力相互作用分析中地震动输入方法研究. 岩土工程学报. 2018(S2): 58-62 .
    45. 董正方,曾繁凯,李凤丽,张继康. 基于IDA法的矩形地下车站层间位移角抗震性能限值研究. 现代隧道技术. 2018(S2): 441-449 .

    Other cited types(42)

Catalog

    Article Metrics

    Article views (405) PDF downloads (85) Cited by(87)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return