Citation: | Shi Lingling, Xiao Xiaolong, Zhang Xiaofeng, Fan Lijia, Shan Minghe, Tian Qiang. Control and ground experiment of docking force for multi-module unit assembly in orbit by space robots. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 800-816. DOI: 10.6052/0459-1879-23-458 |
[1] |
Lillie CF. On-orbit assembly and servicing of future space observatories//Space Telescopes and Instrumentation I: Optical, Infrared, and Millimete. Orlando, FL, USA, 2006: 767-778
|
[2] |
Dorsey J, Watson J. Space assembly of large structural system architectures (SALSSA)//AIAA Space, Long Beach, California. 2016: 5481
|
[3] |
Nishida S, Yoshikawa T. A new end-effector for on-orbit assembly of a large reflector//IEEE 9th International Conference on Control, Automation, Robotics and Vision, Singapore. 2006: 1-6
|
[4] |
Hoyt RP. SpiderFab: An architecture for self-fabricating space systems//AIAA Space 2013 Conference and Exposition, San Diego, CA, USA. 2013: 5509
|
[5] |
梁斌, 徐文福, 李成等. 地球静止轨道在轨服务技术研究现状与发展趋势. 宇航学报, 2010, 1: 1-13 (Liang Bin, Xu Wenfu, LI Cheng, et al. The status and prospect of orbital servicing in the geostationary orbit. Journal of Astronautics, 2010, 1: 1-13 (in Chinese)
|
[6] |
Belvin WK, Doggett WR, Watson JJ, et al. In-space structural assembly: Applications and technology//3rd AIAA Spacecraft Structures Conference, San Diego, California, USA. 2016: 2163
|
[7] |
Patane S, Joyce ER, Snyder MP, et al. Archinaut: In-space manufacturing and assembly for next-generation space habitats//AIAA Space and Astronautics Forum and Exposition, Orlando, FL, USA. 2017: 5227
|
[8] |
Coll GT, Webster GK, Pankiewicz OK, et al. NASA’s exploration and in-space services (NExIS) division OSAM-1 propellant transfer subsystem progress 2020//AIAA Propulsion and Energy Forum, 2020
|
[9] |
Mcelwain MW, Feinberg LD, Kimble RA, et al. The james webb space telescope mission status//SPIE Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave: Vol 12180, Montréal, Québec, Canada. SPIE, 2022: 228-240
|
[10] |
Roa Garzon MA, Koch C, Rognant M, et al. PULSAR: Testing the technologies for on-orbit assembly of a large telescope//16th Symposium on Advanced Space Technologies in Robotics and Automation, ASTRA 2022. ESA 2022
|
[11] |
孟光, 韩亮亮, 张崇峰. 空间机器人研究进展及技术挑战. 航空学报, 2021, 42(1): 523963 (Meng Guang, Han Liangliang, Zhang Chongfeng. Research progress and technical challenges of space robot. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523963 (in Chinese)
|
[12] |
Jefferies SA, Arney DC, Jones CA, et al. Impacts of in-space assembly as applied to human exploration architectures//AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA. 2018: 5306
|
[13] |
李大明, 饶炜, 胡成威等. 空间站机械臂关键技术研究. 载人航天, 2014, 20(3): 238-242 (Li Daming, Rao Wei, Hu Chengwei, et al. Key technology review of the research on the space station manipulator. Manned Spaceflight, 2014, 20(3): 238-242 (in Chinese)
|
[14] |
刘宏, 刘冬雨, 蒋再男. 空间机械臂技术综述及展望. 航空学报, 2021, 42(1): 33-46 (Liu Hong, Liu Dongyu, Jiang Zainan. Space manipulator technology: Review and prospect. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 33-46 (in Chinese)
|
[15] |
薛智慧, 刘金国. 空间机械臂操控技术研究综述. 机器人, 2022, 44(1): 107-128 (Xue Zhihui, Liu Jinguo. Review of space manipulator control technologies. Robot, 2022, 44(1): 107-128 (in Chinese)
|
[16] |
贾庆轩, 张龙, 陈钢等. 多目标融合的冗余空间机械臂碰前轨迹优化. 宇航学报, 2014, 35(6): 639-647 (Jia Qingxuan, Zhang Long, Chen Gang, et al. Pre-impact trajectory optimization of redundant space manipulator with multi-target fusion. Journal of Astronautics, 2014, 35(6): 639-647 (in Chinese)
|
[17] |
Jiao C, Liang B, Wang X. Adaptive reaction null-space control of dual-arm space robot for post-capture of non-cooperative target//29th Chinese Control and Decision Conference (CCDC), Chongqing, China. IEEE, 2017: 531-537
|
[18] |
杨胜丽, 吴志刚, 孟得山等. 机器人在轨组装结构的耦合动力学与步态优化. 力学学报, 2023, 55: 1-11 (Yang Shengli, Wu Zhigang, Meng Deshan, et al. Coupled dynamics and gait optimization of the spatial structure of robot walking assembly. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55: 1-11 (in Chinese)
|
[19] |
Boning P, Dubowsky S. Coordinated control of space robot teams for the on-orbit construction of large flexible space structures. Advanced Robotics, 2010, 24(3): 303-323 doi: 10.1163/016918609X12619993300665
|
[20] |
樊茂, 汤亮. 空间机器人抓捕碰撞分析与轨迹规划镇定控制. 宇航学报, 2021, 42(10): 1305 (Fan Mao, Tang Liang. Impact analysis and trajectory planning stabilization control for space robot after capturing target. Journal of Astronautics, 2021, 42(10): 1305 (in Chinese)
|
[21] |
Flores-Abad A, Crain A, Nandayapa M, et al. Disturbance observer-based impedance control for a compliance capture of an object in space//AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, USA. 2018: 1329
|
[22] |
陶东, 张强, 赵良玉. 模型不确定的空间机器人无力传感器阻抗控制方法. 宇航学报, 2021, 42(6): 766 (Tao Dong, Zhang Qiang, Zhao Liangyu. Force sensorless impedance control for a space robot with dynamic uncertainty. Journal of Astronautics, 2021, 42(6): 766 (in Chinese)
|
[23] |
朱安, 陈力. 基于有限时间收敛的双臂空间机器人捕获卫星主动对接力/位姿阻抗控制. 力学学报, 2022, 54(10): 2861-2873 (Zhu An, Chen Li. Active docking operation of dual-arm space robot capture satellite force/posture impedance control based on finitetime convergent. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2861-2873 (in Chinese)
|
[24] |
Shi L, Xiao X, Shan M, et al. Force control of a space robot in on-orbit servicing operation. Acta Astronautica, 2022, 193: 469-482 doi: 10.1016/j.actaastro.2022.01.015
|
[25] |
Shi L, Katupitiya J, Kinkaid N. Hybrid control of space robot in on-orbit screw-driving operation. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1253-1264 doi: 10.1109/TAES.2017.2780558
|
[26] |
邓启文, 韦庆. 自由飘浮空间机器人地面实验系统. 宇航学报, 2010, 12: 2807-2812 (Deng Qiwen, Wei Qing. A ground experimental system for free-floating space robot. Journal of Astronautics, 2010, 12: 2807-2812 (in Chinese)
|
[27] |
田大可, 范小东, 郑夕健等. 空间可展开天线微重力环境模拟研究现状与展望. 机械工程学报, 2021, 57(3): 11-25 (Tian Dake, Fan Xiaodong, Zheng Xijian, et al. Research status and prospect of micro-gravity environment simulation for space deployable antenna. Journal of Mechanical Engineering, 2021, 57(3): 11-25 (in Chinese) doi: 10.3901/JME.2021.03.011
|
[28] |
许剑, 任迪, 杨庆俊等. 五自由度气浮仿真试验台的动力学建模. 宇航学报, 2010, 1: 60-64 (Xu Jian, Ren Di, Yang Qingjun, et al. Dynamic modeling for the 5-DoF air bearing spacecraft simulator. Journal of Astronautics, 2010, 1: 60-64 (in Chinese)
|
[29] |
Kang JJ, Zhu ZH, Santaguida LF. Analytical and experimental investigation of stabilizing rotating uncooperative target by tethered space tug. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2426-2437 doi: 10.1109/TAES.2021.3061798
|
[30] |
Medzmariashvili N, Medzmariashvili E, Tsignadze N, et al. Possible options for jointly deploying a ring provided with V-fold bars and a flexible pre-stressed center. CEAS Space Journal, 2013, 5: 203-210 doi: 10.1007/s12567-013-0037-6
|
[31] |
Wei ZT, Wen H, Hu HY, et al. Ground experiment on rendezvous and docking with a spinning target using multistage control strategy. Aerospace Science and Technology, 2020, 104: 105967 doi: 10.1016/j.ast.2020.105967
|
[32] |
周诚. 空间机器人目标捕获的自主控制策略研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2019 (Zhou Cheng. Research on autonomous control strategy of space robot for target capturing. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
Zhou Cheng. Research on autonomous control strategy of space robot for target capturing. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
|
[33] |
He J, Shen MJ, Gao F, et al. Active compliance control of a position-controlled industrial robot for simulating space operations. Chinese Journal of Mechanical Engineering, 2022, 35(1): 1-14 doi: 10.1186/s10033-021-00666-0
|
[34] |
马小良. 基于自适应阻抗控制的并联机器人柔顺控制研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学机电工程学院, 2009 (Ma Xiaoliang. Research on compliant control of parallel manipulator based on adaptive impedance control. [Master Thesis]. Harbin: Harbin Institute of Technology, 2009 (in Chinese)
Ma Xiaoliang. Research on compliant control of parallel manipulator based on adaptive impedance control. [Master Thesis]. Harbin: Harbin Institute of Technology, 2009 (in Chinese)
|
[35] |
Seraji H. Adaptive admittance control: An approach to explicit force control in compliant motion//Proceedings of 1994 IEEE International Conference on Robotics and Automation. IEEE, 1994: 2705-2712
|
[1] | Li Xiaojun, Zhang Xun, Xing Haojie. A TRANSMITTING BOUNDARY WITH TIME-VARYING COMPUTATIONAL ARTIFICIAL WAVE VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2924-2935. DOI: 10.6052/0459-1879-24-178 |
[2] | Wang Piguang, Lu Ranran, Yan Qiushi, Li Shutao, Du Xiuli. AN INPUT METHOD FOR EXPLOSION PROBLEMS BASED ON THE ACOUSTIC SUBSTRUCTURE OF EXPLOSION SOURCE UNDER UNDERWATER EXPLOSIVE LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 915-924. DOI: 10.6052/0459-1879-22-450 |
[3] | Xing Haojie, Li Xiaojun, Liu Aiwen, Li Hongjing, Zhou Zhenghua, Chen Su. EXTRAPOLATION-TYPE ARTIFICIAL BOUNDARY CONDITIONS IN THE NUMERICAL SIMULATION OF WAVE MOTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1480-1495. DOI: 10.6052/0459-1879-20-408 |
[4] | Wu Lihua, Zhao Mi, Du Xiuli. A TIME-DOMAIN ARTIFICIAL BOUNDARY CONDITION FOR VECTOR WAVE IN MULTILAYERED WAVEGUIDE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 554-567. DOI: 10.6052/0459-1879-20-213 |
[5] | Li Shutao, Liu Jingbo, Bao Xin. IMPROVEMENT OF EXPLICIT ALGORITHMS STABILITY WITH VISCO-ELASTIC ARTIFICIAL BOUNDARY ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1838-1849. DOI: 10.6052/0459-1879-20-224 |
[6] | Liu Jingbo, Bao Xin, Tan Hui, Wang Jianping, Guo Dong. DYNAMICAL ARTIFICIAL BOUNDARY FOR FLUID MEDIUM IN WAVE MOTION PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1418-1427. DOI: 10.6052/0459-1879-17-199 |
[7] | Zhang Xiaolong, Li Xiaojun, Chen Guoxing, Zhou Zhenghua. AN IMPROVED METHOD OF THE CALCULATION OF EQUIVALENT NODAL FORCES IN VISCOUS-ELASTIC ARTIFICIAL BOUNDARY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1126-1135. DOI: 10.6052/0459-1879-16-070 |
[8] | Viscous-spring dynamical artificial boundary for saturated porous media[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 605-611. DOI: 10.6052/0459-1879-2006-5-2005-403 |
[9] | A stress artificial boundary in FEA for near-field wave problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 49-56. DOI: 10.6052/0459-1879-2006-1-2004-442 |
[10] | A METHOD FOR THE STABILITY ANALYSIS OF LOCAL ARTIFICIAL BOUNDARIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(3): 376-380. DOI: 10.6052/0459-1879-1996-3-1995-344 |
1. |
井渭彪,王展,景立平,齐文浩. 粘弹性边界输入及大直径隧道地震反应数值模拟. 地震科学进展. 2025(03): 125-134 .
![]() | |
2. |
柳国环,费琦翔. 边界-土-多跨桥梁系统的分区独立内部子结构地震波输入法及验证. 中国公路学报. 2025(03): 331-342 .
![]() | |
3. |
王飞,刘云贺,李虎,薛炳,牟猷,宋志强. 基于FEM-IBIEM的河谷坝址地震动输入方法及地震动场模拟研究. 振动与冲击. 2025(06): 244-253 .
![]() | |
4. |
梁建文,陈慧芳,李东桥,巴振宁. 地下管廊抗震研究现状综述. 天津大学学报(自然科学与工程技术版). 2024(02): 209-222 .
![]() | |
5. |
潘玉华,王翠坤,时继瑞,陈才华,邱盛源,马明,崔明哲,董皓. 考虑土-结构相互作用的超高层结构地震非线性分析. 建筑结构学报. 2024(06): 25-38 .
![]() | |
6. |
王昴,韦芳芳,杨晶晶,王永泉. 地震动多角度斜入射下无压隧洞地震响应分析. 河南科学. 2024(04): 567-577 .
![]() | |
7. |
刘书序,胡进军. 远海岛礁与场地地震反应研究现状. 世界地震工程. 2024(02): 136-147 .
![]() | |
8. |
陈凌宇. 考虑子盆地影响的二维盆地非线性地震反应研究. 江苏建筑. 2024(05): 23-25+50 .
![]() | |
9. |
刘又恺,梁建文,巴振宁,王永光,马英. 斜入射地震波作用下非基岩场地核电结构地震响应. 地震工程与工程振动. 2024(06): 102-116 .
![]() | |
10. |
黄德龙,王惠跃,岑航,宗钟凌,刘强,汤爱平,陶夏新. 基于SV波斜入射水平非一致场管廊动力响应研究. 振动与冲击. 2024(24): 190-203 .
![]() | |
11. |
王丕光,卢冉冉,闫秋实,李述涛,杜修力. 水下爆炸作用下基于声学的爆源子结构输入方法. 力学学报. 2023(04): 915-924 .
![]() | |
12. |
王展,景立平,陆新宇,齐文浩. 粘弹性人工边界单元及地震动输入方法比较研究. 世界地震工程. 2023(02): 167-177 .
![]() | |
13. |
沈欣茹,郝冰,李远东,陈珍,周正华. 河谷地形对地震动的影响分析. 地震学报. 2023(04): 706-716 .
![]() | |
14. |
张小玲,徐英铎,王丕光,吴洁琼. 端承桩-土动力相互作用的频域子结构分析方法. 防灾减灾工程学报. 2023(04): 701-711 .
![]() | |
15. |
侯世伟,高广亮,张皓,孟素云,曲金红. 螺旋锚复合基础对村镇生土建筑抗震性能影响研究. 防灾减灾工程学报. 2023(04): 778-786+796 .
![]() | |
16. |
张佳文,李明超,韩帅,闫文钰,张敬宜. 非一致地震作用下高坝-复杂地基体系动力响应分析. 水利学报. 2023(09): 1099-1110+1121 .
![]() | |
17. |
张佳文,李明超,韩帅,闫文钰. 基于波场分离的不规则地形下地震波输入方法. 工程力学. 2023(11): 69-80+109 .
![]() | |
18. |
宝鑫,刘晶波,李述涛,王菲. 基于混合波场地震动输入技术的近海场地地震反应分析方法. 地震学报. 2022(01): 5-14 .
![]() | |
19. |
胡烨之,翟秋,张雅琪,卢昌红. 粘弹性边界及地震动输入在ABAQUS中的实现. 江淮水利科技. 2022(05): 5-9 .
![]() | |
20. |
Xin Bao,Jingbo Liu,Hui Tan,Shutao Li,Fei Wang. A comparative analysis of seismic response of shallow buried underground structure under incident P, SV and Rayleigh waves. Earthquake Research Advances. 2022(04): 72-78 .
![]() |
|
21. |
谷音,蔡亮. 基于分离式近场地基模型的土-曲线梁桥非一致地震反应分析方法研究. 地震工程与工程振动. 2021(02): 53-64 .
![]() | |
22. |
宝鑫,刘晶波,李述涛,王菲. 土-结构相互作用对储液结构动力反应的影响研究. 工程力学. 2021(S1): 125-132 .
![]() | |
23. |
吴雪,周兴龙,钟瑞,赵才友. 时速350 km高速列车下穿机场对跑道区道面的影响. 铁道建筑. 2021(08): 154-158 .
![]() | |
24. |
戴江力. 基于等效一致边界的重力坝地震响应分析. 水利科技与经济. 2021(08): 73-75+80 .
![]() | |
25. |
李述涛,宝鑫,刘晶波,陈叶青. 基于爆源子结构的爆炸问题多尺度分析方法. 振动与冲击. 2021(20): 63-72 .
![]() | |
26. |
魏奇科,韩亮,王振强,冯立,陈志雄. 双仓地下管廊抗震性能振动台试验研究. 防灾减灾工程学报. 2021(05): 1052-1061 .
![]() | |
27. |
董杰,王雨田,胡晶,孙保安,汪卫华,白海洋. 非晶合金剪切带动力学行为研究. 力学学报. 2020(02): 379-391 .
![]() | |
28. |
刘晶波,宝鑫,李述涛,赵启明,王菲,王东洋. 考虑潟湖影响的岛礁场地地震反应分析. 计算机辅助工程. 2020(02): 46-50+69 .
![]() | |
29. |
王立安,赵建昌,杨华中. 饱和多孔地基与矩形板动力相互作用的非轴对称混合边值问题. 力学学报. 2020(04): 1189-1198 .
![]() | |
30. |
刘晶波,宝鑫,谭辉,王东洋,李述涛. 土-结构动力相互作用分析中基于内部子结构的地震波动输入方法. 土木工程学报. 2020(08): 87-96 .
![]() | |
31. |
刘晶波,宋可,宝鑫,谷音,王建平,郭东. 强震作用下钢筋混凝土灯塔结构破坏模式研究. 自然灾害学报. 2020(04): 83-91 .
![]() | |
32. |
李述涛,刘晶波,宝鑫,贾艺凡,陈一村,肖兰. 人工边界子结构地震动输入方法在ABAQUS中的实现. 自然灾害学报. 2020(04): 133-141 .
![]() | |
33. |
宝鑫,刘晶波,王东洋,李述涛,王菲. 局部成层的海域岛礁场地地震反应分析. 振动与冲击. 2020(21): 55-64 .
![]() | |
34. |
李述涛,刘晶波,宝鑫. 采用黏弹性人工边界单元时显式算法稳定性的改善研究. 力学学报. 2020(06): 1838-1849 .
![]() | |
35. |
陈少林,柯小飞,张洪翔. 海洋地震工程流固耦合问题统一计算框架. 力学学报. 2019(02): 594-606 .
![]() | |
36. |
董正方,师成力,王君杰,曾繁凯. 重力对土体中地下结构地震反应的影响. 隧道建设(中英文). 2019(04): 576-583 .
![]() | |
37. |
芮珍梅,陈建兵. 加性非平稳激励下结构速度响应的FPK方程降维. 力学学报. 2019(03): 922-931 .
![]() | |
38. |
宝鑫,刘晶波,王东洋,王建平,郭东,宋可. P波垂直入射下海域岛礁场地动力反应分析. 工程力学. 2019(S1): 1-7 .
![]() | |
39. |
白建方,马立龙. Rayleigh波场的数值模拟及其应用. 震灾防御技术. 2019(02): 328-340 .
![]() | |
40. |
何卫平,熊堃,卢晓春. 确定性地震动空间差异对重力坝地震响应影响研究. 水利学报. 2019(08): 913-924 .
![]() | |
41. |
陈少林,程书林,柯小飞. 海洋地震工程流固耦合问题统一计算框架——不规则界面情形. 力学学报. 2019(05): 1517-1529 .
![]() | |
42. |
胡丹,张开银,孙亮,李芬,张磊. 饱和多孔介质中外源振动输入方法的研究. 华南理工大学学报(自然科学版). 2019(11): 140-146 .
![]() | |
43. |
柴瑞帅. 地震波动强度变化的数学建模分析与仿真. 地震工程学报. 2018(03): 549-554 .
![]() | |
44. |
胡丹,李芬,张开银. 饱和土–结构动力相互作用分析中地震动输入方法研究. 岩土工程学报. 2018(S2): 58-62 .
![]() | |
45. |
董正方,曾繁凯,李凤丽,张继康. 基于IDA法的矩形地下车站层间位移角抗震性能限值研究. 现代隧道技术. 2018(S2): 441-449 .
![]() |