Citation: | Nan Jianglang, Zhang Zheng, Yao Wei, Liu Fengjun. Effect of zoning parameters on dynamic zone flamelet modeling of supersonic turbulent combustion. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 704-714. DOI: 10.6052/0459-1879-23-438 |
[1] |
李宁, 崔涛, 贺惠新. 高超声速冲压发动机燃烧研究前沿分析. 飞航导弹, 2021, 10: 37-46 (Li Ning, Cui Tao, He Huixin. Frontier analysis of hypersonic ramjet combustion research. Aeronautical Missile, 2021, 10: 37-46 (in Chinese) doi: 10.16338/j.issn.1009-1319.20200402
|
[2] |
岳连捷, 王春, 陈宏等. 高马赫数超燃冲压发动机技术研究进展. 力学学报, 2022, 54(2): 263-288 (Yue Lianjie, Wang Chun, Chen Hong, et al. Research progress in high Mach number scramjet engine technology. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263-288 (in Chinese) doi: 10.6052/0459-1879-21-547
|
[3] |
姜宗林. 关于超声速燃烧与高超动力. 力学进展, 2021, 51(1): 130-140 (Jiang Zonglin About supersonic combustion and hypersonic power. Advance in Mechanics, 2021, 51(1): 130-140 (in Chinese)
Jiang Zonglin About supersonic combustion and hypersonic power. Advance in Mechanics, 2021, 51(1): 130-140 (in Chinese)
|
[4] |
Liu Q, Baccarella D, Lee T. Review of combustion stabilization for hypersonic airbreathing propulsion. Prog Aerosp Sci, 2020, 119: 100636
|
[5] |
Zuo J, Zhang S, Bao W, et al. Effects of supersonic film cooling on shock wave/boundary layer interaction in a scramjet combustor. Thermal Science and Engineering Progress, 2023, 41: 101817
|
[6] |
Sun MB, Zhong Z, Liang JH, et al. Experimental investigation on combustion performance of cavity-strut injection of supercritical kerosene in supersonic model combustor. Acta Astronautica, 2016, 127: 112-119
|
[7] |
Fang J, Deng X, Chen ZX. Direct numerical simulation of supersonic internal flow in a model scramjet combustor under a non-reactive condition. Physics of Fluids, 2023, 35(2): 1-15
|
[8] |
Wang H, Wang Z, Sun M, et al. Large-eddy/reynolds-averaged Navier–Stokes simulation of combustion oscillations in a cavity-based supersonic combustor. International Journal of Hydrogen Energy, 2013, 38(14): 5918-5927 doi: 10.1016/j.ijhydene.2013.02.100
|
[9] |
Nielsen TB, Edwards JR, Chelliah HK, et al. Hybrid large eddy simulation/reynolds-averaged Navier–Stokes analysis of a premixed ethylene-fueled dual-mode scramjet combustor. AIAA Journal, 2021, 59(7): 2440-2456 doi: 10.2514/1.J059343
|
[10] |
王方, 任海锋, 蔡江涛等. 湍流燃烧算例在多种CPU平台的模拟性能对比. 航空计算技术, 2023, 53(1): 108-112 (Wang Fang, Ren Haifeng, Cai Jiangtao, et al. Comparison of simulation performance of turbulent combustion examples on multiple CPU platforms. Aviation Computing Technology, 2023, 53(1): 108-112 (in Chiniese) doi: 10.3969/j.issn.1671-654X.2023.01.024
|
[11] |
Han W, Scholtissek A, Hasse C. The role of tangential diffusion in evaluating the performance of flamelet models. P Combust Inst, 2019, 37(2): 1967-1974
|
[12] |
Klimenko AY. On the relation between the conditional moment closure and unsteady flamelets. Combust Theor Model, 2001, 5(3): 275-294 doi: 10.1088/1364-7830/5/3/302
|
[13] |
Golovitchev VI, Nordin N, Jarnicki R, et al. 3-D diesel spray simulations using a new detailed chemistry turbulent combustion model. SAE Technical Papers, 2000
|
[14] |
Magnussen B. On the Structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow//19th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 1981
|
[15] |
Swaminathan N, Bilger RW. Assessment of combustion submodels for turbulent nonpremixed hydrocarbon flames. Combustion and Flame, 1999, 116(4): 519-545 doi: 10.1016/S0010-2180(98)00067-4
|
[16] |
Kronenburg A, Papoutsakis AE. Conditional moment closure modeling of extinction and re-ignition in turbulent non-premixed flames. P Combust Inst, 2005, 30(1): 759-766 doi: 10.1016/j.proci.2004.08.235
|
[17] |
Zhang Z, Yao W, Zhao W. Les modeling of duo-model scramjet by dynamic zone flamelet model//AIAA Propulsion and Energy 2021 Forum. American Institute of Aeronautics and Astronautics. 2021
|
[18] |
Waidmann W, Alff F, Böhm M, et al. Supersonic combustion of hydrogen/air in a scramjet combustion chamber. Space Technology, 1994, 6: 421-429
|
[19] |
Fureby C. Subgrid models, reaction mechanisms, and combustion models in large-eddy simulation of supersonic combustion. AIAA J, 2021, 59(1): 215-227 doi: 10.2514/1.J059597
|
[20] |
Pino Martín M, Piomelli U, Candler GV. Subgrid-scale models for compressible large-eddy simulations. Theoretical and Computational Fluid Dynamics, 2000, 13(5): 361-376 doi: 10.1007/PL00020896
|
[21] |
Baurle RA, Eklund DR. Analysis of dual-mode hydrocarbon scramjet operation at Mach 4–6.5. Journal of Propulsion & Power, 2011, 18(5): 990-1002
|
[22] |
Shur ML, Spalart PR, Strelets MK, et al. A hybrid rans-les approach with delayed-des and wall-modelled les capabilities. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649 doi: 10.1016/j.ijheatfluidflow.2008.07.001
|
[23] |
Gritskevich MS, Garbaruk AV, Schütze J, et al. Development of DDES and IDDES formulations for the k- ω shear stress transport model. Flow, Turbulence and Combustion, 2012, 88(3): 431-449 doi: 10.1007/s10494-011-9378-4
|
[24] |
Kee RJ, Rupley FM, Miller JA. Chemkin-Ii: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. United States: Sandia National Laboratories, 1989: 89-8009
|
[25] |
Chase MW. Nist-Janaf thermochemical tables, 4th Edition. Journal of Physical and Chemical Reference Data, 1998, 9(1-2): 1-1952
|
[26] |
Wilke CR. A viscosity equation for gas mixtures. The Journal of Chemical Physics, 1950, 18(4): 517-519
|
[27] |
Yao W. On the application of dynamic zone flamelet model to large eddy simulation of supersonic hydrogen flame. Int J Hydrogen Energ, 2020, 45(41): 21940-21955 doi: 10.1016/j.ijhydene.2020.05.189
|
[28] |
Yao W. Nonequilibrium effects in hypersonic combustion modeling. J Propul Power, 2022, 38(4): 523-540
|
[29] |
Thornber B, Bilger RW, Masri AR, et al. An algorithm for les of premixed compressible flows using the conditional moment closure model. J Comput Phys, 2011, 230(20): 7687-7705 doi: 10.1016/j.jcp.2011.06.024
|
[30] |
Weller HG, Tabor G, Jasak H, et al. A tensorial approach to cfd using object oriented techniques. Computers in Physics, 1997, 12(6): 620-631
|
[31] |
Lee Y, Yao W, Fan X. Low-dissipative hybrid compressible solver designed for large eddy simulation of supersonic turbulent flows. AIAA Journal, 2018, 56(8): 3086-3096 doi: 10.2514/1.J056404
|
[32] |
Chen SS, Yan C, Xiang XH. Effective low-mach number improvement for upwind schemes. Computers & Mathematics with Applications, 2018, 75(10): 3737-3755
|
[33] |
Greenshields CJ, Weller HG, Gasparini L, et al. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. International Journal for Numerical Methods in Fluids, 2009, 38(2): 139-161
|
[34] |
Shen W, Huang Y, Yao W, et al. Improved delayed detached eddy simulation of supersonic combustion fueled by liquid kerosene. Fuel, 2022, 313: 123031
|
[35] |
Yao W, Liu H, Zhang Z, et al. Effects of thermal/chemical nonequilibrium on a high-mach ethylene-fueled scramjet. J Propul Power, 2023, 39(4): 1-18
|
[36] |
Zhang H, Zhao M, Huang Z. Large eddy simulation of turbulent supersonic hydrogen flames with openfoam. Fuel, 2020, 282: 118812
|
[37] |
Ingenito A, Bruno C. Physics and regimes of supersonic combustion. University of Rome "La Sapienza", 2010, 48(3): 515-525
|
[38] |
Lock AJ, Briones AM, Qin X, et al. Lift off characteristics of partially premixed flames under normal and microgravity conditions. Combustion and Flame, 2005, 143(3): 159-173 doi: 10.1016/j.combustflame.2005.05.011
|