EI、Scopus 收录
中文核心期刊
Wang Songbai, Huo Jiaxin, Zhao Xing, Chen Yong, Wu Yadong, Zhang Jun. Analysis on non-synchronous vibration of compressor rotor blades based on fluid-structure interaction. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 635-643. DOI: 10.6052/0459-1879-23-435
Citation: Wang Songbai, Huo Jiaxin, Zhao Xing, Chen Yong, Wu Yadong, Zhang Jun. Analysis on non-synchronous vibration of compressor rotor blades based on fluid-structure interaction. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 635-643. DOI: 10.6052/0459-1879-23-435

ANALYSIS ON NON-SYNCHRONOUS VIBRATION OF COMPRESSOR ROTOR BLADES BASED ON FLUID-STRUCTURE INTERACTION

  • Received Date: September 04, 2023
  • Accepted Date: November 06, 2023
  • Available Online: November 07, 2023
  • Published Date: November 07, 2023
  • The non-synchronous vibration (NSV) of compressor rotor blades is a new type of aeroelastic problem discovered in recent years, the characteristics is manifested as the non synchronization between the vibration frequency and the rotating frequency and exhibiting frequency locking phenomena, which seriously affects the reliability and operation safety of aeroengine. Currently, the mechanism is not fully understood. In order to deeply investigate the interaction mechanism between the unstable flow and non-synchronous vibration of blades, a time domain fluid-structure interaction method of multistage compressor full-annulus rotor blades was established, the unsteady flow field, aerodynamic excitation frequency and structural response characteristics of rigid and flexible blades were numerically studied to reveal the fluid-structure interaction mechanism of NSV. The results indicate that the periodic shedding and reattachment process of radial separation vortices on the tip suction surface causes the severe pressure fluctuation under near stall conditions. Its three times harmonic aerodynamic excitation frequency is close to the first-order bending natural frequency and provides the initial aerodynamic excitation for the NSV. During the NSV, the displacement response of rotor blade exhibits equal amplitude limit cycle oscillation, and dominated by the first-order bending model. The non-integer multiple aerodynamic excitation and its harmonic frequencies generated by radial separation vortex are ultimately locked-in the first-order bending natural frequency. The motion stress of NSV causes the circumferential flow field of adjacent channels to become consistent. This present result and the mechanism understanding of fluid-structure interaction of NSV can provide useful references for the analysis of blade vibration failure induced by unstable flow in compressor.
  • [1]
    王增增, 马宏伟. 航空发动机轴流压气机非整阶振动实验研究进展. 航空动力学报, 2022, 37(11): 2416-2429 (Wang Zengzeng, Ma Hongwei. Overview of experimental reasearch on non-synchronous vibration in aero-engine axial compressor. Journal of Aerospace Power, 2022, 37(11): 2416-2429 (in Chinese)

    Wang Zengzeng, Ma Hongwei. Overview of experimental reasearch on non-synchronous vibration in aero-engine axial compressor. Journal of Aerospace Power, 2022, 37(11): 2416-2429 (in Chinese)
    [2]
    许登科, 董旭, 徐瑞泽等. 压气机流动稳定性自适应控制方法研究进展. 力学学报, 2022, 54(3): 559-576 (Xu Dengke, Dong Xu, Xu Ruize, et al. Research progress of adaptive control methods for compressor flow stability. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 559-576 (in Chinese)

    Xu Dengke, Dong Xu, Xu Ruize, et al. Research progress of adaptive control methods for compressor flow stability. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 559-576 (in Chinese)
    [3]
    Moller D, Schiffer HP. On the mechanism of spike stall inception and near stall nonsynchronous vibration in an axial compressor. Journal of Engineering for Gas Turbines and Power, 2021, 143: 041001 doi: 10.1115/1.4049663
    [4]
    Yang ZY, Wu YD, Liu ZL, et al. Tip flow on rotating instability on an axial compressor with different tip clearances. Aerospace Science and Technology, 2023, 139: 108364 doi: 10.1016/j.ast.2023.108364
    [5]
    Zheng Y, Gao QZ, Yang H. Non-synchronous blade vibration analysis of a transonic fan. Chinese Journal of Aeronautics, 2023, 36(1): 178-190 doi: 10.1016/j.cja.2022.04.011
    [6]
    Baumgartner M, Kameier F, Hourmouziadis J. Non-engine order blade vibration in a high pressure compressor//Proceedings of the 12th International Symposium on Airbreathing Engines, 1995
    [7]
    Kielb R, Barter JW, Thomas JP, et al. Blade excitation by aerodynamic instabilities: A compressor blade study//Proceedings of the ASME Turbo Expo 2003, GT2003-38634
    [8]
    Jüngst M, Holzinger F, Schiffer HP, et al. Analysing non-synchronous blade vibration in a transonic compressor rotor//Proceedings of the 11th European Conference on Turbomachinery Fluid Dynamic & Thermodynamics, 2015
    [9]
    Hollenbach R, Kielb R, Hall K. Extending a van der pol-based reduced-oeder model for fluid-structure interaction applied to non- synchronous vibrations in turbomachinery. Journal of Turbomachinery, 2022, 144(3): 031006
    [10]
    Hollenbach R, Kielb R, Hall K. A fluid–structure interaction tool using a van der pol-based reduced-order model for buffet and nonsynchronous vibrations. Journal of Turbomachinery, 2023, 145(1): 011009 doi: 10.1115/1.4055447
    [11]
    Hollenbach R, Kielb R, Hall K. An improved preliminary design tool for turbomachinery blades using van der pol based reduced-order model for non-synchronous vibrations//Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, 2022, GT2022- 86120
    [12]
    Gan J, Im HS, Espinal D, et al. Investigation of a compressor rotor non-synchronous vibration with and without fluid-structure interaction//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 2014, GT2014-26478
    [13]
    Gan J, Im HS, Zha GC. Numerical examination of lock-in hypothesis of non-synchronous vibration in an axial compressor//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017, GT2017-65244
    [14]
    Han L, Wei DS, Wang YR, et al. Lock-in phenomenon of tip clearance flow and its influence on aerodynamic damping under specified vibration on an axial transonic compressor rotor. Chinese Journal of Aeronautics, 2022, 35(3): 185-200 doi: 10.1016/j.cja.2021.02.016
    [15]
    Han L, Wei DS, Wang YR, et al. Locked-in phenomenon between tip clearance flow instabilities and enforced blade motion in axial transonic compressor rotors//Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, 2020, GT2020-16050
    [16]
    Zhu XC, Hu P, Lin T, et al. Numerical investigations on non- synchronous vibration and frequency lock-in of low-pressure steam turbine last stage. Proceedings of the Institution of Mechanical Engineers, Part A : Journal of Power and Energy, 2022, 236(4): 647- 661
    [17]
    程荣辉, 余华蔚, 汪松柏等. 多级压气机转子负荷系数对叶片非同步振动的影响. 航空学报, 2023, 44(14): 628722 (Cheng Ronghui, Yu Huawei, Wang Songbai, et al. Effect of aerodynamic loading coefficient on occurrence of non-synchronous vibration in a multi-stage compressor. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628722 (in Chinese)

    Cheng Ronghui, Yu Huawei, Wang Songbai, et al. Effect of aerodynamic loading coefficient on occurrence of non-synchronous vibration in a multi-stage compressor. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628722 (in Chinese)
    [18]
    汪松柏, 张少平, 余华蔚等. 高负荷压气机旋转不稳定诱发转子叶片非同步振动的实验研究. 推进技术, 2023, 44(2): 22010036 (Wang Songbai, Zhang Shaoping, Yu Huawei, et al. Experimental research on rotor blade non-synchronous vibrations induced by rotating instability of high load compressor. Journal of Propulsion Technology, 2023, 44(2): 22010036 (in Chinese)

    Wang Songbai, Zhang Shaoping, Yu Huawei, et al. Experimental research on rotor blade non-synchronous vibrations induced by rotating instability of high load compressor. Journal of Propulsion Technology, 2023, 44(2): 22010036 (in Chinese)
    [19]
    Gao FL, Yang MS, Zhang ZB, et al. Experiment and theoretical analysis of a type of non-synchronous vibration in a high pressure compressor//Proceedings of the 32nd Congress of the International Council of the Aeronautical Sciences, 2021
    [20]
    许志远, 杨明绥, 王萌. 压气机声共振特征理论预测与试验研究. 航空学报, 2023, 44(14): 628236 (Xu Zhiyuan, Yang Mingsui, Wang Meng. Theoretical prediction and experimental study on acoustic resonance characteristics of certain type of compressor. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628236 (in Chinese)

    Xu Zhiyuan, Yang Mingsui, Wang Meng. Theoretical prediction and experimental study on acoustic resonance characteristics of certain type of compressor. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628236 (in Chinese)
    [21]
    汪松柏, 陈勇, 吴亚东等. 轴流压气机转子叶片非同步振动的研究进展. 航空学报, 2023, 44(17): 628044 (Wang Songbai, Chen Yong, Wu Yadong, et al. Research progress on non-synchronous vibration of axial compressor rotor blade. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 628044 (in Chinese)

    Wang Songbai, Chen Yong, Wu Yadong, et al. Research progress on non-synchronous vibration of axial compressor rotor blade. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 628044 (in Chinese)
    [22]
    Thomassin J, Vo HD, Mureithi NW. Blade tip clearance flow and compressor NSV: The jet core feedback theory as the coupling mechanism//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air, 2007, GT2007-27286
    [23]
    Thomassin J, Vo HD, Mureithi NW. Experimental demonstration of the tip clearance flow resonance behind compressor non-synchronous vibration//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, 2008, GT2008-50303
    [24]
    Thomassin J, Vo HD, Mureithi NW. The tip clearance flow resonance behind axial compressor nonsynchronous vibration. Journal of Turbomachinery, 2011, 133(4): 041030 doi: 10.1115/1.4001368
    [25]
    Patel P, Yang YC, Zha GC. Improved delayed detached eddy simulation of a 1.5 stage axial compressor non-synchronous vibration//Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, 2020, GT2020-15073
    [26]
    Im HS, Zha GC. Investigation of non-synchronous vibration mechanism for a high speed axial compressor using delayed DES//Proceedings of the 52nd Aerospace Sciences Meeting, 2014
    [27]
    Im HS, Zha GC. Investigation of flow instability mechanism causing compressor rotor-blade nonsynchronous vibration. AIAA Journal, 2014, 52(9): 2019-2031 doi: 10.2514/1.J052781
    [28]
    März J, Hah C, Neise W. An experimental and numerical investigation into the mechanisms of rotating instability//Proceedings of ASME Turbo Expo 2001, GT2001-0536
    [29]
    Vo HD. Role of tip clearance flow in rotating instabilities and nonsynchronous vibrations. Journal of Propulsion and Power, 2010, 26(3): 556-561 doi: 10.2514/1.26709
    [30]
    Tian J, Yao D, Wu YD, et al. Experimental study on rotating instability mode characteristics of axial compressor tip flow. Experiments in Fluids, 2018, 59(4): 63
    [31]
    Wang H, Wu YD, Yue SY, et al. Numerical investigation on the flow mechanism of multi-peak frequency feature of rotating instability. Journal of Thermal Science, 2021, 30(2): 668-681 doi: 10.1007/s11630-020-1349-4
    [32]
    Camp TR. A study of acoustic resonance in a low-speed multistage compressor. Journal of Turbomachinery, 1999, 121(1): 36-43 doi: 10.1115/1.2841232
    [33]
    Brandstetter C, Paoletti B, Ottavy X. Acoustic and convective mechanisms contributing to non-synchronous-vibrations in a multistage compressor//Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, 2009, GT2019-91514
    [34]
    Fiquet AL, Aubert S, Brandstetter C, et al. Acoustic resonance in an axial multistage compressor leading to non-synchronous blade vibration. Journal of Turbomachinery, 2021, 143(9): 091014 doi: 10.1115/1.4050626
    [35]
    Wu Y, An G, Chen Z, et al. Origins and structure of rotating instability-part 2: Numerical observations in a transonic axial compressor rotor//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, 2016, GT2016-56223
    [36]
    Du J, Li J, Lin F, et al. The self-induced unsteadiness of tip leakage flow in an axial low-speed compressor with single circumferential casing groove. Journal of Thermal Science, 2013, 22(6): 565-572 doi: 10.1007/s11630-013-0663-5
    [37]
    Pullan G, Young AM, Day IJ, et al. Origins and structure of spike-type rotating stall. Journal of Turbomachinery, 2015, 137: 051007 doi: 10.1115/1.4028494
    [38]
    Yamada K, Kikuta H, Iwakiri K, et al. An explanation for flow features of spike-type stall inception in an axial compressor rotor. Journal of Turbomachinery, 2013, 135(2): 021023
  • Related Articles

    [1]Optimization of unsteady cavitation performance of airfoil based on machine learning[J]. Chinese Journal of Theoretical and Applied Mechanics.
    [2]Hua Zhang, Zhiyong Lu, Shengdong Sun. The experimental study on unsteady horseshoe vortex structure in juncture flow with PIV[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 171-178. DOI: 10.6052/0459-1879-2008-2-2007-246
    [3]Laiping Zhang, Xinghua Chang, Xupeng Duan, Zhenya Wang, Hanxin Zhang. Implicit algorithm based on dynamic hybrid mesh for incompressible unsteady flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 577-586. DOI: 10.6052/0459-1879-2007-5-2006-397
    [4]Unsteady flow mechanisms revisited in insect flapping flight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(3): 257-265. DOI: 10.6052/0459-1879-2005-3-2004-137
    [5]NUMERICAL SIMULATION OF THE VORTEX STRUCTURES OF A CIRCULAR. CYLINDER OSCILLATING TRANSVERSELY IN UNIFORM FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(5): 537-547. DOI: 10.6052/0459-1879-1993-5-1995-676
    [6]THEORETICAL SOLUTION ON HEAT TRANSFER IN OSCILLATORY PIPE FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(5): 614-619. DOI: 10.6052/0459-1879-1992-5-1995-781
    [7]THREE EXACT SOLUTIONS OF INCOMPRESSIBLE POTENTIAL FLOW INDUCED BY TWO CIRCLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(5): 549-555. DOI: 10.6052/0459-1879-1991-5-1995-875
    [8]A STUDY ON NON-STEADY FLOW OF UPPER-CONVECTED MAXWELL FLUID IN TUBE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(5): 519-525. DOI: 10.6052/0459-1879-1990-5-1995-980

Catalog

    Article Metrics

    Article views (346) PDF downloads (63) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return