Citation: | Chen Juhui, An Ran, Shu Lingfeng, Li Dan, Liu Xiaogang, Mao Ying, Chen Jiyuan, Gao Haoming, Lyu Wensheng, Meng Fanqi. Study on motion of multi-component ferromagnetic particles with modified magnetization model. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 740-750. DOI: 10.6052/0459-1879-23-432 |
[1] |
Saša N, Jasna R, Fatima Ž, et al. Chaotic model of brownian motion in relation to drug delivery systems using ferromagnetic particles. Mathematics, 2022, 10(24): 4791 doi: 10.3390/math10244791
|
[2] |
Ali N, Mohsen N, Mohsen MS, et al. Separation and trapping of magnetic particles by insertion of ferromagnetic wires inside a microchip: proposing a novel geometry in magnetophoresis. Journal of Magnetism and Magnetic Materials, 2022, 560: 169424 doi: 10.1016/j.jmmm.2022.169424
|
[3] |
Sharmili P, Rajesh S, Mahendran M, et al. Rheometric and stability analysis of additive infused magnetorheological fluids: A comparative study. The European Physical Journal E, 2023, 46(2): 6 doi: 10.1140/epje/s10189-023-00262-1
|
[4] |
Lampaert GS, Quinci F, Ostayen VAR. Rheological texture in a journal bearing with magnetorheological fluids. Journal of Magnetism and Magnetic Materials, 2020, 499: 166218 doi: 10.1016/j.jmmm.2019.166218
|
[5] |
Ahmed H, Qi L, Carlos JS. Magneto-rheological fluids: tele-manipulation of ferromagnetic particles with external magnetic field for flow control and zonal isolation. Geoenergy Science and Engineering, 2023, 228: 212029 doi: 10.1016/j.geoen.2023.212029
|
[6] |
Zheng X, Xue Z, Wang Y, et al. Modeling of particle capture in high gradient magnetic separation: A review. Powder Technology, 2019, 352: 159-169 doi: 10.1016/j.powtec.2019.04.048
|
[7] |
Zheng X, Du L, Li S, et al. A novel method for efficient recovery of ilmenite by high gradient magnetic separation coupling with magnetic fluid. Minerals Engineering, 2023, 202: 108279 doi: 10.1016/j.mineng.2023.108279
|
[8] |
Li L, He M, Peng K, et al. A novel magnetically oscillatory fluidized bed using micron-sized magnetic particles for continuous capture of emulsified oil droplets. Separation and Purification Technology, 2023, 312: 123424 doi: 10.1016/j.seppur.2023.123424
|
[9] |
Wang B, Tang T, Yan S, et al. Magnetic segregation behaviors of a binary mixture in fluidized beds. Powder Technology, 2022, 397: 117031 doi: 10.1016/j.powtec.2021.117031
|
[10] |
Lima AAA, Quirino JN, Cavina R, et al. Bentonite functionalized with magnetite nanoparticles synthesized from mining sludge: A new magnetic material for removing iron and manganese ions from water. Journal of Nanoparticle Research, 2023, 25(7): 155
|
[11] |
Baresel C, Schaller V, Jonasson C, et al. Functionalized magnetic particles for water treatment. Heliyon, 2019, 5(8): e02325 doi: 10.1016/j.heliyon.2019.e02325
|
[12] |
林添明, 荆国华. 磁稳流化床研究与应用进展. 化工进展, 2012, 31(9): 1885-1890 (Lin Tianming, Jing Guohua. Research and application progress of magnetically stabilized fluidized bed. Chemical Industry and Engineering Progress, 2012, 31(9): 1885-1890 (in Chinese) doi: 10.16085/j.issn.1000-6613.2012.09.002
|
[13] |
Yu D, Wang Y, Yu B, et al. Numerical simulation and application of nanomagnetic enzyme in a liquid-solid magnetic fluidized bed. Process Biochemistry, 2018, 75: 121-129 doi: 10.1016/j.procbio.2018.09.019
|
[14] |
Yu D, Ma X, Huang Y, et al. Immobilization of cellulase on magnetic nanoparticles for rice bran oil extraction in a magnetic fluidized bed. International Journal of Food Engineering, 2021, 18(1): 15-26
|
[15] |
李响. 外场作用下流化床中气固两相流动数值模拟. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2010 (Li Xiang. Simulations of hydrodynamics of gas and particles in fluidized bed with additional extra field. [Master Thesis]. Harbin: Harbin Institute of Technology, 2010 (in Chinese)
Li Xiang. Simulations of hydrodynamics of gas and particles in fluidized bed with additional extra field. [Master Thesis]. Harbin: Harbin Institute of Technology, 2010 (in Chinese)
|
[16] |
Han K, Feng YT, Owen DRJ. Three-dimensional modelling and simulation of magnetorheological fluids. International Journal for Numerical Methods in Engineering, 2010, 84(11): 1273-1302 doi: 10.1002/nme.2940
|
[17] |
Rosensweig RE. Fluidization: Hydrodynamic stabilization with a magnetic field. Science, 1979, 204(4388): 57-60 doi: 10.1126/science.204.4388.57
|
[18] |
Pinto-Espinoza J. Dynamic behavior of ferromagnetic particles in a liquid-solid magnetically assisted fluidized bed (MAFB): Theory, experiment, and CFD-DPM simulation. [PhD Thesis]. Corvallis: Oregon State University, 2002
|
[19] |
Hao Z, Li X, Lu H, et al. Numerical simulation of particle motion in a gradient magnetically assisted fluidized bed. Powder Technol, 2010, 203(3): 555-564 doi: 10.1016/j.powtec.2010.06.022
|
[20] |
Ke C, Shu S, Zhang H, et al. LBM-IBM-DEM modelling of magnetic particles in a fluid. Powder Technology, 2017, 314: 264-280 doi: 10.1016/j.powtec.2016.08.008
|
[21] |
Fan G, Song Y, Xia M, et al. Photocatalytic inactivation of algae in a fluidized bed photoreactor with an external magnetic field. Journal of Environmental Management, 2022, 307: 114552 doi: 10.1016/j.jenvman.2022.114552
|
[22] |
Hao W, Zhu Q. Operating range of magnetic stabilization flow regime for magnetized fluidized bed with geldart-b magnetizable and nonmagnetizable particles. Particuology, 2022, 60: 90-98 doi: 10.1016/j.partic.2021.02.004
|
[23] |
Valverde JM, Castellanos A. Magnetic field assisted fluidization: a modified richardson-zaki equation. China Particuology, 2007, 5(1-2): 61-70 doi: 10.1016/j.cpart.2007.01.001
|
[24] |
Zhu Q, Zhang Q, Yang P, et al. Measuring segregation in fluidized bed with magnetizable and nonmagnetizable particles based on magnetic permeability. Fuel, 2023, 340: 127554 doi: 10.1016/j.fuel.2023.127554
|
[25] |
杨慧, 万东玉, 曹长青. 磁−流场耦合气-固流化床气含率的模拟. 石油化工, 2014, 43(1): 51-55 (Yang Hui, Wan Dongyu, Cao Changqing. Simulation of gas holdup in a gas-solid fluidized bed with magnetic and fluid fields. Petrochemical Technology, 2014, 43(1): 51-55 (in Chinese)
|
[26] |
刘金平. 微小磁流化床内纳米颗粒流动特性的数值模拟研究. [硕士论文]. 青岛: 青岛科技大学, 2014 (Liu Jinping. Numerical simulation of fluidization characteristics of nanoparticles in micro-scale magnetic fluidized beds. [Master Thesis]. Qingdao: Qingdao University of Science and Technology, 2014 (in Chinese)
Liu Jinping. Numerical simulation of fluidization characteristics of nanoparticles in micro-scale magnetic fluidized beds. [Master Thesis]. Qingdao: Qingdao University of Science and Technology, 2014 (in Chinese)
|
[27] |
Chen H, Liu Y, Liu B, et al. CPFD simulation of multicomponent bed material diffusion in dense phase zone of bubbling bed. Journal of North China Electric Power University, 2021, 48(1): 114-120
|
[28] |
Song X, Wang Q, Yang X, et al. Mass transfer simulation of multi-component particles in a fluidized bed. Journal of Chinese Society of Power Engineering, 2021, 41(1): 1-7
|
[29] |
Ganzha VL, Saxena SC. Hydrodynamic behavior of magnetically stabilized fluidized beds of magnetic particles. Powder Technology, 2000, 107(1): 31-35
|
[30] |
Jovanovic GN, Somchamni T, Atwater JE, et al. Magnetically assisted liquid–solid fluidization in normal and microgravity conditions: experiment and theory. Powder Technology, 2004, 148(2-3): 80-91 doi: 10.1016/j.powtec.2004.09.028
|
[31] |
Johnson KL. Contact Mechanics. Cambridge: Cambridge University Press, 1987
|
[32] |
Mindlin RD, Deresiewicz H. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 1953, 20(3): 327-344 doi: 10.1115/1.4010702
|
[1] | Yu Jiangfei, Zhou Zixuan, Peng Jiangpeng, Tang Tao, Yang Wangfeng, Yang Yixin, Wang Hongbo. OPTIMIZATION DESIGN OF COMBUSTION CHAMBER CONFIGURATION PARAMETERS FOR SCRAMJET ENGINES BASED ON SURROGATE MODELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3359-3370. DOI: 10.6052/0459-1879-24-297 |
[2] | Cui Da, Zhang Minghao, Li Daokui. DESIGN AND EXPERIMENTAL VERIFICATION OF COMPOSITE BEND-TWIST COUPLED STRUCTURE BASED ON ASYMMETRIC STACKING SEQUENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2888-2901. DOI: 10.6052/0459-1879-24-230 |
[3] | Shi Guanghui, Jia Yibo, Hao Wenyu, Wu Wenhua, Li Qiang, Lin Ye, Du Zongliang. OPTIMAL DESIGN OF RUDDER STRUCTURES BASED ON DATA-DRIVEN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2577-2587. DOI: 10.6052/0459-1879-23-187 |
[4] | Zhao Huan. ADAPTIVE MULTI-FIDELITY POLYNOMIAL CHAOS-KRIGING MODEL-BASED EFFICIENT AERODYNAMIC DESIGN OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 223-238. DOI: 10.6052/0459-1879-22-391 |
[5] | Deng Kaiwen, Chen Haixin. HYBRID OPTIMIZATION ALGORITHM BASED ON DIFFERENTIAL EVOLUTION AND RBF RESPONSE SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 441-455. DOI: 10.6052/0459-1879-16-285 |
[6] | Li Guangli, Cui Kai, Xiao Yao, Xu Yingzhou. LEADING EDGE OPTIMIZATION AND PARAMETER ANALYSIS OF HIGH PRESSURE CAPTURING WINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 877-885. DOI: 10.6052/0459-1879-16-036 |
[7] | Guangyong Sun, Guangyao Li, Gang Zheng, Zhihui Gong. Multi-objective optimization for sheet metal formnig of drawing with successive response surface method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 245-255. DOI: 10.6052/0459-1879-2010-2-2007-532 |
[8] | Fengtao Zhang, Kai Cui, Guowei Yang, Yuanyuan Cui. Optimization design of waverider based on the artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 418-424. DOI: 10.6052/0459-1879-2009-3-2008-422 |
[9] | Jian Wang, Guozhong Zhao, Hongwu Zhang. Shape control and design optimization of the piezoelectric curved shell structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 618-625. DOI: 10.6052/0459-1879-2007-5-2006-508 |
1. |
李凯,杨静媛,高传强,叶坤,张伟伟. 基于POD和代理模型的静气动弹性分析方法. 力学学报. 2023(02): 299-308 .
![]() | |
2. |
黄垲轩 ,丁喆 ,张严 ,李小白 . 高承载梯度分层点阵结构的拓扑优化设计方法. 力学学报. 2023(02): 433-444 .
![]() | |
3. |
苗京涛,李河宗,黄素霞. 3D打印金属血管支架结构设计和力学性能测试. 特种铸造及有色合金. 2023(05): 619-623 .
![]() | |
4. |
李盼,冯静,许博轩,王志超,房德磊,曹琳,张峻霞. 冠状动脉血管支架的研究现状. 医疗卫生装备. 2023(06): 92-100 .
![]() | |
5. |
陈耀,叶王杰,史佳遥,冯健. 三浦折纸超材料结构数字化设计与模型验证. 力学学报. 2022(07): 2019-2029 .
![]() | |
6. |
魏云波,赵丹阳,王敏杰,李红霞. 高径向支撑性可生物降解聚合物血管支架结构设计与力学性能分析. 中国机械工程. 2020(09): 1098-1107+1130 .
![]() | |
7. |
王侃,李金亮,王景华,张磊安. 基于单粒子寻优算法的铺层装备支架梁结构优化设计. 可再生能源. 2020(12): 1621-1625 .
![]() | |
8. |
张宏辉,冯海全,李治国,韩青松. 镁合金冠脉支架支撑性能分析及其优化. 医用生物力学. 2019(01): 14-20 .
![]() | |
9. |
李笑,李明. 折纸及其折痕设计研究综述. 力学学报. 2018(03): 467-476 .
![]() |