Citation: | Wang Jinhua, Ju Rongyuan, Cai Xiao, Zhang Weijie, Huang Zuohua. Experimental study on the effects of rotating gliding arc plasma on lean premixed swirling flames. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2732-2740. DOI: 10.6052/0459-1879-23-371 |
[1] |
Ju YG, Sun WT. Plasma assisted combustion: Dynamics and chemistry. Progress in Energy and Combustion Science, 2015, 48: 21-83 doi: 10.1016/j.pecs.2014.12.002
|
[2] |
Lacoste DA. Flames with plasmas. Proceedings of the Combustion Institute, 2023, 39(4): 5405-5428 doi: 10.1016/j.proci.2022.06.025
|
[3] |
Kong CD, Li ZS, Aldén M, et al. Stabilization of a turbulent premixed flame by a plasma filament. Combustion and Flame, 2019, 208: 79-85 doi: 10.1016/j.combustflame.2019.07.002
|
[4] |
Choe JH, Sun WT. Blowoff hysteresis, flame morphology and the effect of plasma in a swirling flow. Journal of Physics D: Applied Physics, 2018, 51(36): 365201 doi: 10.1088/1361-6463/aad4dc
|
[5] |
Choe JH, Sun WT, Ombrello T, et al. Plasma assisted ammonia combustion: Simultaneous NO x reduction and flame enhancement. Combustion and Flame, 2021, 228: 430-432 doi: 10.1016/j.combustflame.2021.02.016
|
[6] |
Choe JH, Sun WT. Experimental investigation of non-equilibrium plasma-assisted ammonia flames using NH2* chemiluminescence and OH planar laser-induced fluorescence. Proceedings of the Combustion Institute, 2023, 39(4): 5439-5446 doi: 10.1016/j.proci.2022.07.001
|
[7] |
Zare S, Lo HW, Roy S, et al. On the low-temperature plasma discharge in methane/air diffusion flames. Energy, 2020, 197: 117185 doi: 10.1016/j.energy.2020.117185
|
[8] |
Zhou SY, Su LY, Shi TY, et al. Experimental study on the diffusive flame stabilization mechanism of plasma injector driven by AC dielectric barrier discharge. Journal of Physics D: Applied Physics, 2019, 52(26): 265202 doi: 10.1088/1361-6463/ab15cd
|
[9] |
Gao JL, Kong CD, Zhu JJ, et al. Visualization of instantaneous structure and dynamics of large-scale turbulent flames stabilized by a gliding arc discharge. Proceedings of the Combustion Institute, 2019, 37(4): 5629-5636 doi: 10.1016/j.proci.2018.06.030
|
[10] |
Kim GT, Seo BH, Lee WJ, et al. Effects of applying non-thermal plasma on combustion stability and emissions of NO x and CO in a model gas turbine combustor. Fuel, 2017, 194: 321-328 doi: 10.1016/j.fuel.2017.01.033
|
[11] |
Kim GT, Yoo CS, Chung SH, et al. Effects of non-thermal plasma on the lean blowout limits and CO/NO x emissions in swirl-stabilized turbulent lean-premixed flames of methane/air. Combustion and Flame, 2020, 212: 403-414 doi: 10.1016/j.combustflame.2019.11.024
|
[12] |
Lacoste DA, Moeck JP, Paschereit CO, et al. Effect of plasma discharges on nitric oxide emissions in a premixed flame. Journal of Propulsion and Power, 2013, 29(3): 748-751 doi: 10.2514/1.B34819
|
[13] |
Lin BX, Wu Y, Zhu YF, et al. Experimental investigation of gliding arc plasma fuel injector for ignition and extinction performance improvement. Applied Energy, 2019, 235: 1017-1026 doi: 10.1016/j.apenergy.2018.11.026
|
[14] |
Tang Y, Sun JG, Shi BL, et al. Extension of flammability and stability limits of swirling premixed flames by AC powered gliding arc discharges. Combustion and Flame, 2021, 231: 111483 doi: 10.1016/j.combustflame.2021.111483
|
[15] |
Sun JG, Tang Y, Li SQ. Plasma-assisted stabilization of premixed swirl flames by gliding arc discharges. Proceedings of the Combustion Institute, 2021, 38(4): 6733-6741 doi: 10.1016/j.proci.2020.06.223
|
[16] |
Kong CD, Wang Y, Wu XJ, et al. Rotating gliding arc discharge induced flame oscillation near the lean blowout limit. Combustion and Flame, 2023, 254: 112812 doi: 10.1016/j.combustflame.2023.112812
|
[17] |
Wang Y, Kong CD, Wu XJ, et al. Characteristics of rotating gliding arc induced thermal ignition of lean methane-air mixtures. Applications in Energy and Combustion Science, 2023, 14: 100154
|
[18] |
Ju RY, Wang JH, Xia H, et al. Effect of rotating gliding arc plasma on lean blow-off limit and flame structure of bluff body and swirl-stabilized premixed flames. IEEE Transactions on Plasma Science, 2021, 49(11): 3554-3565 doi: 10.1109/TPS.2021.3121286
|
[19] |
琚荣源, 王金华, 穆海宝等. 旋转滑动弧放电等离子体对氨气旋流火焰稳定性的影响. 工程热物理学报, 2022, 43(8): 2225-2233 (Ju Rongyuan, Wang Jinhua, Mu Haibao, et al. Effect of rotating gliding arc discharge plasma on stability of ammonia/air swirling flames. Journal of Engineering Thermophysics, 2022, 43(8): 2225-2233 (in Chinese)
Ju Rongyuan, Wang jinhua, Mu Haibao, et al. Effect of rotating gliding arc discharge plasma on stability of ammonia/air swirling flames. Journal of Engineering Thermophysics, 2022, 43 (08): 2225-2233 (in Chinese)
|
[20] |
Zhang WJ, Wang JH, Mao R, et al. Experimental study of compact swirl flames with lean premixed CH4/H2/air mixtures at stable and near blow-off conditions. Experimental Thermal and Fluid Science, 2021, 122: 110294 doi: 10.1016/j.expthermflusci.2020.110294
|
[21] |
Zhang M, An ZH, Wang L, et al. The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor. International Journal of Hydrogen Energy, 2021, 46(40): 21013-21025 doi: 10.1016/j.ijhydene.2021.03.210
|
[22] |
Kim W, Do H, Mungal MG, et al. Plasma-discharge stabilization of jet diffusion flames. IEEE Transactions on Plasma Science, 2006, 34(6): 2545-2551 doi: 10.1109/TPS.2006.886084
|
[23] |
De Giorgi MG, Sciolti A, Campilongo S, et al. Lean blowout sensing and plasma actuation of non-premixed flames. IEEE Sensors Journal, 2016, 16(10): 3896-3903 doi: 10.1109/JSEN.2016.2538970
|
[24] |
耿华东, 陈一, 崔巍等. 滑动弧放电等离子体激励的值班火焰头部放电特性实验. 空军工程大学学报(自然科学版), 2022, 1(1): 53-63 (Geng Huadong, Chen Yi, Cui Wei, et al. An experiment in discharge characteristics of pilot Flame dome based on gliding arc discharge plasma actuation. Journal of Air Force Engineering University (Natural Science Edition), 2022, 1(1): 53-63 (in Chinese)
Geng Huadong, Chen Yi, Cui Wei, et al. An experiment in discharge characteristics of pilot Flame dome based on gliding arc discharge plasma actuation. Journal of Air Force Engineering University(Natural Science Edition), 2022, 1: 53-63 (in Chinese)
|
[25] |
Obradović BM, Cvetanović N, Krstić IB, et al. Study of fast atoms in molecular gas plasma via emission spectroscopy. Advances in Space Research, 2023, 71(2): 1352-1361 doi: 10.1016/j.asr.2022.07.072
|
[26] |
Do H, Carter C. Hydrocarbon fuel concentration measurement in reacting flows using short-gated emission spectra of laser induced plasma. Combustion and Flame, 2013, 160(3): 601-609 doi: 10.1016/j.combustflame.2012.12.002
|
[27] |
Deng J, Cui G, Lu YJ, et al. Effects of environmental temperature on the spectral characteristics of RGA plasma-assisted combustion actuator for aero-engines. Vacuum, 2023, 207: 111621 doi: 10.1016/j.vacuum.2022.111621
|
[28] |
张磊, 于锦禄, 赵兵兵等. 高气压下交流旋转滑动弧放电特性实验研究. 物理学报, 2022, 71(7): 274-286 (Zhang Lei, Yu Jinlu, Zhao Bingbing, et al. Experimental investigation of discharge characteristics of alternating current rotating gliding arc discharge under high air pressure. Acta Physica Sinica, 2022, 71(7): 274-286 (in Chinese) doi: 10.7498/aps.71.20211232
07): 274-286 (Zhang Lei, Yu Jin-Lu, Zhao Bing-Bing, et al. Experimental investigation of discharge characteristics of alternating current rotating gliding arc discharge under high air pressure. Acta Physica Sinica, 2022, 71(7): 075204 (in Chinese) doi: 10.7498/aps.71.20211232
|
[29] |
Sun ZW, Zhu JJ, Li ZS, et al. Optical diagnostics of a gliding arc. Optics Express, 2013, 21(5): 6028-6044 doi: 10.1364/OE.21.006028
|
[30] |
Wang WZ, Patil B, Heijkers S, et al. Nitrogen fixation by gliding arc plasma: Better insight by chemical kinetics modelling. ChemSusChem, 2017, 10(10): 2145-2157 doi: 10.1002/cssc.201700095
|
[31] |
Zhu JJ, Ehn A, Gao JL, et al. Translational, rotational, vibrational and electron temperatures of a gliding arc discharge. Optics Express, 2017, 25(17): 20243-20257 doi: 10.1364/OE.25.020243
|
[32] |
Glarborg P, Miller JA, Ruscic B, et al. Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 2018, 67: 31-68 doi: 10.1016/j.pecs.2018.01.002
|
[33] |
Kim W, Do H, Mungal M, et al. Flame stabilization enhancement and NOx production using ultra short repetitively pulsed plasma discharges//44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006-1-9-12. 2006: 560
|
[34] |
Shin HH, Yoon WS. Hydrocarbon effects on the promotion of non-thermal plasma NO–NO2 conversion. Plasma Chemistry and Plasma Processing, 2003, 23: 681-704 doi: 10.1023/A:1025595318945
|
[35] |
Zhao H, Wu LN, Patrick C, et al. Studies of low temperature oxidation of n-pentane with nitric oxide addition in a jet stirred reactor. Combustion and Flame, 2018, 197: 78-87 doi: 10.1016/j.combustflame.2018.07.014
|
[36] |
Zhong HT, Mao XQ, Rousso AC, et al. Kinetic study of plasma-assisted n-dodecane/O2/N2 pyrolysis and oxidation in a nanosecond-pulsed discharge. Proceedings of the Combustion Institute, 2021, 38(4): 6521-6531 doi: 10.1016/j.proci.2020.06.016
|
[37] |
Ombrello T, Ju YG, Fridman A. Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma. AIAA Journal, 2008, 46(10): 2424-2433 doi: 10.2514/1.33005
|
[1] | Wan Zheng, Liu Yuanyuan. AN ANISOTROPIC CONSTITUTIVE MODEL CONSIDERING DILATANCY EFFECT AND ITS APPLICATION IN CAVITY EXPANSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2936-2954. DOI: 10.6052/0459-1879-24-156 |
[2] | Ren Haijie, Yuan Xianxu, Chen Jianqiang, Sun Dong, Zhu Linyang, Xiang Xinghao. PREDICTION OF REYNOLDS STRESS ANISOTROPIC TENSOR BY NEURAL NETWORK WITHIN WIDE SPEED RANGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 347-358. DOI: 10.6052/0459-1879-21-518 |
[3] | Li Xikui, Du Youyao, Duan Qinglin. MESO-STRUCTURE INFORMED EFFECTIVE STRESSES IN SATURATED AND UNSATURATED POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 29-39. DOI: 10.6052/0459-1879-15-289 |
[4] | Zhao Chenggang, Liu Zhenzhen, Li Jian, Liu Yan, Cai Guoqing. EFFECTIVE STRESS IN SOIL MECHANICS AND THE DISCUSSIONS ABOUT ITS FUNCTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 356-361. DOI: 10.6052/0459-1879-14-189 |
[5] | Ai Zhiyong, Cao Guojun, Cheng Yichong. ANALYTICAL LAYER-ELEMENT OF PLANE STRAIN BIOT'S CONSOLIDATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 401-407. DOI: 10.6052/0459-1879-2012-2-20120224 |
[6] | Mingxiang Chen. n the fourth order tensor valued function of the stress in return map algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 228-238. DOI: 10.6052/0459-1879-2010-2-2009-016 |
[7] | Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086 |
[8] | Anisotropic yield criterion based on microplane effective stress vector[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 692-697. DOI: 10.6052/0459-1879-2006-5-2005-467 |
[9] | STRUCTURE TENSOR OF QUATERNION MULTIPLICATION AND TENSOR EXPRESSIONS OF QUATERNION MATRICES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(6): 702-710. DOI: 10.6052/0459-1879-1995-6-1995-486 |
[10] | THE SOLUTION OF STRESS INTENSITY FACTORS FOR NON-SYMMETRIC DOUBLE EDGE CRACKS IN ANISOTROPIC PLATES BY COMPLEX VARIABLE- GENERALIZED VARIATIONAL METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(5): 582-591. DOI: 10.6052/0459-1879-1993-5-1995-681 |