Citation: | Mao Xinhui, Zhang Jiyuan, Qi Huan, Qiu Changquan, Shen Weihe, Tian Jianguo, Wang Fei, Tao Kai. An ultra-low frequency electromagnetic vibration energy harvester with watt-level output driven by the helical clutch frequency-upgrading mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2168-2177. DOI: 10.6052/0459-1879-23-362 |
[1] |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488(7411): 294-303 doi: 10.1038/nature11475
|
[2] |
Wang ZL. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 2017, 20(2): 74-82 doi: 10.1016/j.mattod.2016.12.001
|
[3] |
Gao M, Wang P, Jiang L, et al. Power generation for wearable systems. Energy & Environmental Science, 2021, 14(4): 2114-2157
|
[4] |
Keum K, Kim JW, Hong SY, et al. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Advanced Materials, 2020, 32(51): 1-34
|
[5] |
Tao K, Chen Z, Yu J, et al. Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Advanced Science, 2022, 9(10): 2104168 doi: 10.1002/advs.202104168
|
[6] |
Liang Y, Wu Z, Wei Y, et al. Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-micro Letters, 2022, 14(1): 52 doi: 10.1007/s40820-021-00787-0
|
[7] |
于家豪, 陶凯. 振动俘能技术在可穿戴领域的应用. 机械工程学报, 2022, 58(20): 46-71 (Yu Jiahao, Tao Kai. Applications of vibration energy harvesting technology in the field of wearable devices. Chinese Journal of Mechanical Engineering, 2022, 58(20): 46-71 (in Chinese) doi: 10.3901/JME.2022.20.046
Yu Jiahao, Tao Kai. Applications of vibration energy harvesting technology in the field of wearable devices. Chinese Journal of Mechanical Engineering, 2022, 58(20): 46-71. (in Chinese)) doi: 10.3901/JME.2022.20.046
|
[8] |
Chandrasekhar A, Vivekananthan V, Khandelwal G, et al. A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting morse code. Nano Energy, 2019, 60: 850-856 doi: 10.1016/j.nanoen.2019.04.004
|
[9] |
Qiu Y, Sun S, Xu C, et al. The frequency-response behaviour of flexible piezoelectric devices for detecting the magnitude and loading rate of stimuli. Journal of Materials Chemistry, 2021, 9(2): 584-594
|
[10] |
Song Y, Wang N, Hu C, et al. Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors. Nano Energy, 2021, 84: 105919
|
[11] |
Xi Y, Guo H, Zi Y, et al. Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Advanced Energy Materials, 2017, 7(12): 1602397 doi: 10.1002/aenm.201602397
|
[12] |
Cao X, Jie Y, Wang N, et al. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Advanced Energy Materials, 2016, 6(23): 1600665 doi: 10.1002/aenm.201600665
|
[13] |
Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242-246 doi: 10.1126/science.1124005
|
[14] |
Yang K, Wang J, Yurchenko D. A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Applied Physics Letters, 2019, 115(19): 193901
|
[15] |
Zhukov S, von Seggern H, Zhang XQ, et al. Microenergy harvesters based on fluorinated ethylene propylene piezotubes. Advanced Engineering Materials, 2020, 22(5): 1901399 doi: 10.1002/adem.201901399
|
[16] |
Zhang YL, Luo AX, Wang YF, et al. Rotational electromagnetic energy harvester for human motion application at low frequency. Applied Physics Letters, 2020, 116(5): 053902 doi: 10.1063/1.5142575
|
[17] |
Wu Z, Cao Z, Ding R, et al. An electrostatic-electromagnetic hybrid generator with largely enhanced energy conversion efficiency. Nano Energy, 2021, 89(B): 106425
|
[18] |
Han N, Zhao D, Schluter JU, et al. Performance evaluation of 3D printed miniature electromagnetic energy harvesters driven by air flow. Applied Energy, 2016, 178: 672-680 doi: 10.1016/j.apenergy.2016.06.103
|
[19] |
Ding R, Cao Z, Wu Z, et al. Theoretical study of the rotary electrostatic generators based on a universal equivalent circuit model. Social Science Research Network Electronic Journal, 2022, 100: 107512
|
[20] |
Tao K, Wu J, Tang LH, et al. Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets. Journal of Micromechanics and Microengineering, 2017, 27(4): 044002 doi: 10.1088/1361-6439/aa5e73
|
[21] |
Tao K, Tang L H, Wu J, et al. Investigation of multimodal electret-based mems energy harvester with impact-induced nonlinearity, Journal of Microelectromechanical Systems, 2018, 27(2): 276-288
|
[22] |
Ma G, Li B, Niu S, et al. A bioinspired triboelectric nanogenerator for all state energy harvester and self-powered rotating monitor. Nano Energy, 2022, 91: 106637 doi: 10.1016/j.nanoen.2021.106637
|
[23] |
Tao K, Chen Z, Yi H, et al. Hierarchical honeycomb-structured electret /triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-micro Letters, 2021, 13(1): 123 doi: 10.1007/s40820-021-00644-0
|
[24] |
Li C, Liu D, Xu C, et al. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nature Communications, 2021, 12(1): 2950 doi: 10.1038/s41467-021-23207-8
|
[25] |
Zou H, Zhang Y, Guo L, et al. Quantifying the triboelectric series. Nature Communications, 2019, 10: 1427 doi: 10.1038/s41467-019-09461-x
|
[26] |
Cheng XL, Tang W, Song Y, et al. Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy, 2019, 61: 517-532 doi: 10.1016/j.nanoen.2019.04.096
|
[27] |
Han J, Feng Y, Chen P, et al. Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming. Advanced Functional Materials, 2021, 32(2): 2108580
|
[28] |
Ye C, Liu D, Peng X, et al. A hydrophobic self-repairing power textile for effective water droplet energy harvesting. ACS Applied Nano Materials, 2021, 15(11): 18172-18181
|
[29] |
Luo A, Zhang Y, Dai X, et al. An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency. Applied Energy, 2020, 279: 115762 doi: 10.1016/j.apenergy.2020.115762
|
[30] |
Guo X, He T, Zhang Z, et al. Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Applied Nano Materials, 2021, 15(12): 19054-19069
|
[31] |
Kim HJ, Kim JH, Jun KW, et al. Silk nanofiber-networked bio-triboelectric generator. Advanced Energy Materials, 2016, 6(8): 1502329 doi: 10.1002/aenm.201502329
|
[32] |
Huang T, Wang C, Yu H, et al. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 2015, 14: 226-235 doi: 10.1016/j.nanoen.2015.01.038
|
[33] |
Bui VT, Oh JH, Kim JN, et al. Nest-inspired nanosponge-Cu woven mesh hybrid for ultrastable and high-power triboelectric nanogenerator. Nano Energy, 2020, 71: 104561 doi: 10.1016/j.nanoen.2020.104561
|
[34] |
Tao K, Yi HP, Yang Y, et al. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy, 2020, 67: 104-197
|
[35] |
Zi Y, Guo H, Wen Z, et al. Harvesting low-frequency ( < 5 Hz): Irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Applied Nano Materials, 2016, 10(4): 4797-4805
|
[36] |
Yang B, Zeng W, Peng ZH, et al. A fully verified theoretical analysis of contact-mode triboelectric nanogenerators as a wearable power source. Advanced Energy Materials, 2016, 6(16): 1600505 doi: 10.1002/aenm.201600505
|
[37] |
Feng L, Liu G, Guo H, et al. Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy, 2018, 47: 217-223 doi: 10.1016/j.nanoen.2018.02.042
|
[38] |
Han KW, Kim JN, Rajabi-Abhari A, et al. Long-lasting and steady triboelectric energy harvesting from low-frequency irregular motions using escapement mechanism. Advanced Energy Materials, 2021, 11(4): 2002929 doi: 10.1002/aenm.202002929
|
[39] |
Cho S, Yun Y, Jang S, et al. Universal biomechanical energy harvesting from joint movements using a direction-switchable triboelectric nanogenerator. Nano Energy, 2020, 71: 104584 doi: 10.1016/j.nanoen.2020.104584
|
[40] |
郭纪元, 樊康旗, 张妍等. 线绳驱动转速提升式低频俘能器的设计与研究. 力学学报, 2021, 53(11): 3025-3034 (Guo Jiyuan, Fan Kangqi, Zhang Yan, et al. Development of a low-frequency harvester based on a rope-driven rotor with rotation speed up-regulation function. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3025-3034 (in Chinese) doi: 10.6052/0459-1879-21-469
Guo Jiyuan, Fan Kangqi, Zhang Yan, et al. Development of a low-frequency harvester based on a rope-driven rotor with rotation speed up-regulation function. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3025-3034. (in Chinese)) doi: 10.6052/0459-1879-21-469
|
[41] |
邹鸿翔, 郭丁华, 甘崇早等. 磁力耦合道路能量收集设计与动力学分析. 力学学报, 2021, 53(11): 2941-2949 (Zou Hongxiang, Guo Dinghua, Gan Chongzao, et al. Design and dynamic analysis of magnetic coupling road energy harvesting. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2941-2949 (in Chinese) doi: 10.6052/0459-1879-21-374
Zou Hongxiang, Guo Dinghua, Gan Chongzao, et al. Design and dynamic analysis of magnetic coupling road energy harvesting. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2941-2949. (in Chinese)) doi: 10.6052/0459-1879-21-374
|
[42] |
Zhao LC, Zou HX, Xie X, et al. Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy, 2023, 108: 108222 doi: 10.1016/j.nanoen.2023.108222
|
[43] |
Xu Y, Yang W, Lu X, et al. Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Applied Nano Materials, 2021, 15(10): 16368-16375
|
1. |
王永强,胡春宏,张鹏,杨胜发,胡江,李文杰. 三峡库区黄花城河段环流结构与涡尺度特征初探. 水科学进展. 2022(02): 253-263 .
![]() |