EI、Scopus 收录
中文核心期刊
Zhang Haibao, Yin Xianyi, Sun Meng, Chen Qiang. Recent progress on discharge characteristics of helicon plasma. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2913-2927. DOI: 10.6052/0459-1879-23-348
Citation: Zhang Haibao, Yin Xianyi, Sun Meng, Chen Qiang. Recent progress on discharge characteristics of helicon plasma. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2913-2927. DOI: 10.6052/0459-1879-23-348

RECENT PROGRESS ON DISCHARGE CHARACTERISTICS OF HELICON PLASMA

  • Received Date: July 27, 2023
  • Accepted Date: October 07, 2023
  • Available Online: October 08, 2023
  • Helicon plasma is one of the highest density plasma sources for generating the low-temperature plasma nowadays. It has great application potential in the fields of material processing, thin film deposition, aerospace propulsion, magnetic confinement fusion, and basic plasma physics research. It has received extensive attention from researchers worldwide in recent years. However, people lack in-depth understanding of the discharge theory of helicon plasma. There are various hypotheses about the absorption of energy during plasma excitation and propagation. It is more recognized that energy deposition is achieved by coupling the helicon wave and TG wave in the helicon plasma. At the same time, many unique phenomena, such as low-field peak, mode transition, current-free double layer (CFDL), have been demonstrated during the helicon plasma discharge process, which cannot be explained uniformly. It is sure that the investigation on the discharge characteristics will help to deepen the understanding of the discharge mechanism of helicon plasma. In this paper, the basic research progress on helicon plasma in the past 15 years was reviewed from the aspects of discharge mechanism and discharge characteristics. The results of low-field peak phenomenon, mode transition, and CFDL phenomenon during helicon plasma discharge were summarized. Focusing on the research on the discharge characteristics of helicon plasma, the future directions were prospected, which provides support for understanding the coupling mechanism of helicon plasma discharge and realizing engineering applications.
  • [1]
    Isayama S, Shinohara S, Hada T. Review of helicon high-density plasma: Production mechanism and plasma/wave characteristics. Plasma and Fusion Research, 2018, 13: 1101014 doi: 10.1585/pfr.13.1101014
    [2]
    Boswell RW. Plasma production using a standing helicon wave. Physics Letters, 1970, 33A: 457-458
    [3]
    Takahashi K. Helicon-type radiofrequency plasma thrusters and magnetic plasma nozzles. Reviews of Modern Plasma Physics, 2019, 3: 3 doi: 10.1007/s41614-019-0024-2
    [4]
    Qian J, Ji P, Jin C, et al. The effects of magnetic field on the properties of diamond-like carbon films produced by high-density helicon wave plasma. IEEE Transactions on Plasma Science, 2020, 48: 2431-2436 doi: 10.1109/TPS.2020.2997858
    [5]
    Ji P, Chen J, Huang T, et al. Fast preparation of vertical graphene nanosheets by helicon wave plasma chemical vapor deposition and its electrochemical performance. Diamond and Related Materials, 2020, 108: 107958 doi: 10.1016/j.diamond.2020.107958
    [6]
    Wang C, Liu Y, Sun M, et al. Effect of neutral pressure on the blue core in ar helicon plasma under an inhomogeneous magnetic field. Plasma Science and Technology, 2023, 25: 045403 doi: 10.1088/2058-6272/aca1fa
    [7]
    Wang C, Liu Y, Sun M, et al. Effect of inhomogeneous magnetic field on blue core in ar helicon plasma. Physics of Plasmas, 2021, 28: 123519 doi: 10.1063/5.0070479
    [8]
    Zhu W, Cui R, He F, et al. On the mechanism of density peak at low magnetic field in argon helicon plasmas. Physics of Plasmas, 2022, 29: 093511 doi: 10.1063/5.0091471
    [9]
    Cui R, Zhang T, Yuan Q, et al. Comparison of heating mechanisms of argon helicon plasma in different wave modes with and without blue core. Plasma Science and Technology, 2022, 25: 015403
    [10]
    Zhao G, Zhu W, Wang H, et al. Study of axial double layer in helicon plasma by optical emission spectroscopy and simple probe. Plasma Science and Technology, 2018, 20: 075402 doi: 10.1088/2058-6272/aab4f1
    [11]
    Barkhausen H. Whistling tones from the earth. Proceedings of the Institute of Radio Engineers, 1930, 18: 1155-1159
    [12]
    Aigrain P, Englert F, Wise H. Les semiconducteurs. Physics Today, 1959, 12: 50-52
    [13]
    Gallet RM, Richardson JM, Wieder B, et al. Microwave whistler mode propagation in a dense laboratory plasma. Physical Review Letters, 1960, 4: 347-349 doi: 10.1103/PhysRevLett.4.347
    [14]
    Lehane JA, Thonemann PC. An experimental study of helicon wave propagation in a gaseous plasma. Proceedings of the Physical Society, 1965, 85: 301-316 doi: 10.1088/0370-1328/85/2/312
    [15]
    Legendy CR. Existence of proper modes of helicon oscillations. Journal of Mathematical Physics, 1965, 6: 153-157 doi: 10.1063/1.1704253
    [16]
    Klozenberg JP, Mcnamara B, Thonemann PC. The dispersion and attenuation of helicon waves in a uniform cylindrical plasma. Journal of Fluid Mechanics, 1965, 21: 545-563 doi: 10.1017/S0022112065000320
    [17]
    王陈文. 永磁非均匀磁场螺旋波等离子体中蓝芯特性研究. [硕士论文]. 北京: 北京印刷学院, 2022

    Wang Chenwen. Blue core characteristics of helicon plasma in inhomogeneous magnetic field using permanent magnets. [Master Thesis]. Beijing: Beijing Institute of Graphic Communication, 2022 (in Chinese))
    [18]
    牛晨, 刘忠伟, 杨丽珍等. 低磁场下驻波对螺旋波等离子体均匀性的影响. 物理学报, 2017, 66: 208-212

    Niu Chen, Liu Zhongwei, Yang Lizhen, et al. Effect of standing wave on the uniformity of a low magnetic field helicon plasma. Acta Physica Sinica, 2017, 66: 208-212 (in Chinese)
    [19]
    Ali RA, Antar G, Costantine J. New antenna designs to boost the plasma density in helicon sources. IEEE Transactions on Plasma Science, 2022, 50: 2850-2857 doi: 10.1109/TPS.2022.3189579
    [20]
    Niu C, Zhao G, Wang Y, et al. Correlation of wave propagation modes in helicon plasma with source tube lengths. Physics of Plasmas, 2017, 24: 013518 doi: 10.1063/1.4975008
    [21]
    赵高, 熊玉卿, 马超等. 短管螺旋波放电中等离子体参数测量和模式转化研究. 物理学报, 2014, 63: 235202 (Zhao Gao, Xiong Yuqing, Ma Chao, et al. Characterization of plasma in a short-tube helicon source. Acta Physica Sinica, 2014, 63: 235202 (in Chinese)

    Zhao Gao, Xiong Yuqing, Ma Chao, Liu Zhongwei, Chen Qiang. Characterization of plasma in a short-tube helicon source. Acta Physica Sinica, 232014, 235263: 235202. (in Chinese)).
    [22]
    Cui R, Han R, Yang K, et al. Diagnosis of helicon plasma by local OES. Plasma Sources Science and Technology, 2020, 29: 015018 doi: 10.1088/1361-6595/ab56dc
    [23]
    王陈文, 张海宝, 陈强. 螺旋波等离子体研究进展. 真空科学与技术学报, 2021, 41: 710-720

    Wang Chenwen, Zhang Haibao, Chen Qiang. Recent progress on helicon plasma. Chinese Journal of Vacuum Science and Technology, 2021, 41: 710-720 (in Chinese)
    [24]
    Degeling AW, Boswell RW. Modeling ionization by helicon waves. Physics of Plasmas, 1997, 4: 2748 doi: 10.1063/1.872143
    [25]
    Breizman BN, Arefiev AV. Radially localized helicon modes in nonuniform plasma. Physical Review Letters, 2000, 84: 3863-3866 doi: 10.1103/PhysRevLett.84.3863
    [26]
    Li W, Zhao B, Wang G, et al. Parametric analysis of mode coupling and liner energy deposition properties of helicon and trivelpiece-gould waves in helicon plasma. Acta Physica Sinica, 2020, 69: 115201 doi: 10.7498/aps.69.20200062
    [27]
    Takahashi K, Takayama S, Komuro A, et al. Standing helicon wave induced by a rapidly bent magnetic field in plasmas. Physical Review Letters, 2016, 116: 135001 doi: 10.1103/PhysRevLett.116.135001
    [28]
    Wu M, Xiao C, Wang X, et al. Relationship of mode transitions and standing waves in helicon plasmas. Plasma Science and Technology, 2022, 24: 055002 doi: 10.1088/2058-6272/ac567d
    [29]
    Chen FF. Plasma ionization by helicon waves. Plasma Physics and Controlled Fusion, 1991, 33: 339-364 doi: 10.1088/0741-3335/33/4/006
    [30]
    牛晨. 螺旋波等离子体磁探针诊断实验研究. [硕士论文]. 北京: 北京印刷学院, 2017

    Niu Chen. Experimental study of helicon plasma by magnetic probe diagnostics. [Master Thesis]. Beijing: Beijing Institute of Graphic Communication, 2017 (in Chinese))
    [31]
    Loewenhardt PK, Blackwell BD, Boswell RW, et al. Plasma production in a toroidal heliac by helicon waves. Physical Review Letters, 1991, 67: 2792-2794 doi: 10.1103/PhysRevLett.67.2792
    [32]
    Chen FF, Blackwell DD. Upper limit to landau damping in helicon discharges. Physical Review Letters, 1999, 82: 2677-2680 doi: 10.1103/PhysRevLett.82.2677
    [33]
    Zakeri-Khatir H, Aghamir FM. Landau damping in a bounded magnetized plasma column. Chinese Physics B, 2015, 24: 025201 doi: 10.1088/1674-1056/24/2/025201
    [34]
    Soltani B, Habibi M, Zakeri-Khatir H. The effect of landau damping on the power absorption in a helicon plasma source driven by an m = 0 antenna. Contributions to Plasma Physics, 2017, 57: 362-372 doi: 10.1002/ctpp.201700020
    [35]
    Li WQ, Liu YL, Wang G. Damping characteristics of helicon and trivelpiece-gould waves in high density and low magnetic field helicon plasma. Physics of Plasmas, 2023, 30: 022103 doi: 10.1063/5.0125299
    [36]
    Shamrai KP, Taranov VB. Resonance wave discharge and collisional energy absorption in helicon plasma source. Plasma Physics and Controlled Fusion, 1994, 36: 1719-1735 doi: 10.1088/0741-3335/36/11/002
    [37]
    Borg GG, Boswell RW. Power coupling to helicon and trivelpiece-gould modes in helicon sources. Physics of Plasmas, 1998, 5: 564-571 doi: 10.1063/1.872748
    [38]
    Chen FF, Arnush D. Generalized theory of helicon waves. I. Normal modes. Physics of Plasmas, 1997, 4: 3411-3421
    [39]
    Virko VF, Shamrai KP, Virko YV, et al. Wave phenomena, hot electrons, and enhanced plasma production in a helicon discharge in a converging magnetic field. Physics of Plasmas, 2004, 11: 3888-3897 doi: 10.1063/1.1764830
    [40]
    李文秋, 赵斌, 王刚等. 螺旋波等离子体中螺旋波与trivelpiece-gould波模式耦合及线性能量沉积特性参量分析. 物理学报, 2020, 69: 219-227

    Li Wenqiu, Zhao Bin, Wang Gang, et al. Parametric analysis of mode coupling and liner energy deposition properties of helicon and Trivelpiece-Gould waves in helicon plasma. Acta Physica Sinica, 2020, 69: 219-227 (in Chinese)
    [41]
    李文秋, 唐彦娜, 刘雅琳等. 电子温度各向异性对螺旋波等离子体中电磁模式的传播及功率沉积特性的影响. 物理学报, 2023, 72: 055202

    Li Wenqiu, Tang Yanna, Liu Yalin, et al. Influence of electron temperature anisotropy on wave mode propagation and power deposition characteristics in helicon plasma. Acta Physica Sinica, 2023, 72: 055202 (in Chinese)
    [42]
    Blackwell DD, Madziwa TG, Arnush D, et al. Evidence for trivelpiece-gould modes in a helicon discharge. Physical Review Letters, 2002, 88: 145002 doi: 10.1103/PhysRevLett.88.145002
    [43]
    Chen G, Arefiev AV, Bengtson RD, et al. Resonant power absorption in helicon plasma sources. Physics of Plasmas, 2006, 13: 123507 doi: 10.1063/1.2402913
    [44]
    Lafleur T, Charles C, Boswell RW. Ion beam formation in a very low magnetic field expanding helicon discharge. Physics of Plasmas, 2010, 17: 043505 doi: 10.1063/1.3381093
    [45]
    Chen FF. Helicon discharges and sources: A review. Plasma Sources Science and Technology, 2015, 24: 014001 doi: 10.1088/0963-0252/24/1/014001
    [46]
    Chen FF, Torreblanca H. Permanent-magnet helicon sources and arrays: A new type of rf plasma. Physics of Plasmas, 2009, 16: 057102 doi: 10.1063/1.3089287
    [47]
    Yadav S, Barada KK, Ghosh S, et al. Effect of inhomogeneous magnetic field on plasma generation in a low magnetic field helicon discharge. Physics of Plasmas, 2019, 26: 082109 doi: 10.1063/1.5094814
    [48]
    Wang Y, Zhao G, Liu ZW, et al. Two density peaks in low magnetic field helicon plasma. Physics of Plasmas, 2016, 23: 093507 doi: 10.1063/1.4962678
    [49]
    Zhang G, Huang T, Jin C, et al. Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies. Plasma Science and Technology, 2018, 20: 085603 doi: 10.1088/2058-6272/aac014
    [50]
    Barada KK, Chattopadhyay PK, Ghosh J, et al. Observation of low magnetic field density peaks in helicon plasma. Physics of Plasmas, 2013, 20: 042119 doi: 10.1063/1.4802823
    [51]
    Lafleur T, Charles C, Boswell RW. Characterization of the ion beam formed in a low magnetic field helicon mode. Journal of Physics D: Applied Physics, 2011, 44: 145204 doi: 10.1088/0022-3727/44/14/145204
    [52]
    Wang Y, Zhao G, Liu ZW, et al. Two density peaks in low magnetic field helicon plasma. Physics of Plasmas, 2015, 22: 093507 doi: 10.1063/1.4930287
    [53]
    Zhang T, Cui R, Zhu W, et al. Influence of neutral depletion on blue core in argon helicon plasma. Physics of Plasmas, 2021, 28: 073505 doi: 10.1063/5.0050180
    [54]
    Blackwell BD, Caneses JF, Samuell CM, et al. Design and characterization of the magnetized plasma interaction experiment (MAGPIE): A new source for plasma–material interaction studies. Plasma Sources Science and Technology, 2012, 21: 055033 doi: 10.1088/0963-0252/21/5/055033
    [55]
    Takahashi K, Komuro A, Ando A. Low-pressure, high-density, and supersonic plasma flow generated by a helicon magnetoplasmadynamic thruster. Applied Physics Letters, 2014, 105: 193503 doi: 10.1063/1.4901744
    [56]
    Zhao G, Wang H, Si X, et al. The discharge characteristics in nitrogen helicon plasma. Physics of Plasmas, 2017, 24: 123507 doi: 10.1063/1.5002725
    [57]
    Antar G, Younes J, Darwish M, et al. The polaris linear plasma device. IEEE Transactions on Plasma Science, 2021, 49: 1706-1713 doi: 10.1109/TPS.2021.3070638
    [58]
    Lu Z, Xu G, Yip CS, et al. Development of a compact high-density blue core helicon plasma device under 2000 G magnetic field of ring permanent magnets. Plasma Science and Technology, 2022, 24: 095403 doi: 10.1088/2058-6272/ac6aa8
    [59]
    Thakur SC, Brandt C, Cui L, et al. Formation of the blue core in argon helicon plasma. IEEE Transactions on Plasma Science, 2015, 43: 2754-2759 doi: 10.1109/TPS.2015.2446537
    [60]
    Mukherjee A, Sharma N, Chakraborty M, et al. A study on the influence of external magnetic field on nitrogen rf discharge using langmuir probe and OES methods. Physica Scripta, 2022, 97: 055601 doi: 10.1088/1402-4896/ac6079
    [61]
    Saini V, Ganesh R. Double layer formation and thrust generation in an expanding plasma using 1D-3V PIC simulation. Physics of Plasmas, 2020, 27: 093505 doi: 10.1063/5.0004335
    [62]
    Charles C, Boswell R. Current-free double-layer formation in a high-density helicon discharge. Applied Physics Letters, 2003, 82: 1356-1358 doi: 10.1063/1.1557319
    [63]
    Sahu BB, Tarey RD, Ganguli A. Experimental investigation of current free double layers in helicon plasmas. Physics of Plasmas, 2014, 21: 023504 doi: 10.1063/1.4864651
    [64]
    夏广庆, 郝剑昆, 徐宗琦等. 螺旋波等离子体推力器地面实验原理样机设计. 中国科学: 技术科学, 2015, 45: 9-14

    Xia Guangqing, Hao Jiankun, Xu Zongqi, et al. Principle prototype design for ground experiment of helicon plasma thruster. Scientia Sinica Techologica, 2015, 45: 9-14 (in Chinese)
    [65]
    Takahashi K, Charles C, Boswell R, et al. Performance improvement of a permanent magnet helicon plasma thruster. Journal of Physics D: Applied Physics, 2013, 46: 352001 doi: 10.1088/0022-3727/46/35/352001
    [66]
    Takahashi K. Thirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster. Scientific Reports, 2022, 12: 18618 doi: 10.1038/s41598-022-22789-7
  • Related Articles

    [1]Tan Xin, Lu Shaomei, Dai Shiwei, Yu Xiao, Wang Chengyong, Qin Si, Yuan Zhishan. NUMERICAL SIMULATION OF PHOTODYNAMIC ANTITUMOR DOUBLE-LAYER MICRONEEDLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 237-248. DOI: 10.6052/0459-1879-24-382
    [2]Liu Taolue, Lyu Yumei, Luan Yun, He Fei, Wang Jianhua. NUMERICAL INVESTIGATION ON DOUBLE-LAYER POROUS PLATE OF TRANSPIRATION COOLING WITH PHASE CHANGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 121-129. DOI: 10.6052/0459-1879-23-268
    [3]Wang Sheng, Hu Kaixin. STABILITY ANALYSIS OF THERMOCAPILLARY LIQUID LAYERS WITH TWO FREE SURFACES FOR A BINGHAM FLUID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3398-3407. DOI: 10.6052/0459-1879-22-364
    [4]Yi Haoran, Zhou Kun, Dai Huliang, Wang Lin, Ni Qiao. STABILITY AND MODE EVOLUTION CHARACTERISTICS OF A CANTILEVERED FLUID-CONVEYING PIPE ATTACHED WITH THE LUMPED MASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1800-1810. DOI: 10.6052/0459-1879-20-280
    [5]Li Weihua, Xia Peilin, Zhang Kui, Zhao Chenggang. ONE-DIMENSIONAL TIME-DOMAIN METHOD FOR FREE FIELD IN LAYERED SATURATED POROELASTIC MEDIA BY PLANE WAVE OBLIQUE INCIDENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 349-361. DOI: 10.6052/0459-1879-17-393
    [6]Song Wei, Jiang Zenghui, Jia Quyao. WIND-TUNNEL FREE-FLIGHT TEST OF BOUNDARY LAYER TRANSITION INDUCED BY TRIPPED THREAD FOR SLENDER CONE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1301-1307. DOI: 10.6052/0459-1879-16-128
    [7]Gao Xingjun, Ma Haitao. A NEW METHOD FOR DEALING WITH PSEUDO MODES IN TOPOLOGY OPTIMIZATION OF CONTINUA FOR FREE VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 739-746. DOI: 10.6052/0459-1879-13-406
    [8]Chen Ti, Liu Weidong, Sun Mingbo, Fan Xiaoqiang, Liang Jianhan. PARAMETRIC STUDY ON THE BLENDING FUNCTION IN TRANSITION ZONE OF THE LES/RANS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 487-493. DOI: 10.6052/0459-1879-2012-3-20120304
    [9]Li Wei, Jiang Yanni, Yan Junyi, Chen Qisheng. EFFECT OF MAGNETIC FIELD ON THERMOCAPILLARY CONVECTION IN A DOUBLE-DIFFUSIVE LIQUID LAYER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 481-486. DOI: 10.6052/0459-1879-2012-3-20120303
    [10]Chun-Ping Ren Zhili Zou. The theoretical analysis on multi-mode of the instability of longshore currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 96-105. DOI: 10.6052/0459-1879-2012-1-lxxb2010-380

Catalog

    Article Metrics

    Article views (469) PDF downloads (94) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return