Citation: | Li Jiacheng, Liu Dawei. Enhanced deposition of charged aerosols by ionic wind effects in DC corona discharges. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2997-3004. DOI: 10.6052/0459-1879-23-339 |
[1] |
Coumou D, Rahmstorf S. A decade of weather extremes. Nature Climate Change, 2012, 2(7): 491-496 doi: 10.1038/nclimate1452
|
[2] |
Wallace JM, Held IM, Thompson DWJ, et al. Global warming and winter weather. Science, 2014, 343(6172): 729-730 doi: 10.1126/science.343.6172.729
|
[3] |
Stocks BJ, Fosberg MA, Lynham TJ, et al. Climate change and forest fire potential in russian and canadian boreal forests. Climatic Change, 1998, 38(1): 1-13 doi: 10.1023/A:1005306001055
|
[4] |
Yang Y, Tan X, Liu D, et al. Corona discharge-induced rain and snow formation in air. IEEE Transactions on Plasma Science, 2018, 46(5): 1786-1792 doi: 10.1109/TPS.2018.2820200
|
[5] |
Quadros ME, Marr LC. Environmental and human health risks of aerosolized silver nanoparticles. Journal of the Air & Waste Management Association, 2010, 60(7): 770-781
|
[6] |
Pierce JR, Adams PJ. Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophysical Research Letters, 2009, 36(9): L09820
|
[7] |
Carslaw KS, Harrison RG, Kirkby J. Cosmic rays, clouds, and climate. Science, 2002, 298(5599): 1732-1737 doi: 10.1126/science.1076964
|
[8] |
Nielsen JK, Maus C, Rzesanke D, et al. Charge induced stability of water droplets in subsaturated environment. Atmospheric Chemistry and Physics, 2011, 11(5): 2031-2037 doi: 10.5194/acp-11-2031-2011
|
[9] |
Li J, Huang Z, Liu D, et al. The enhanced aerosol deposition by bipolar corona discharge arrays. Plasma Science and Technology, 2021, 23(6): 064010 doi: 10.1088/2058-6272/abf6ad
|
[10] |
Li D, Li C, Li J, et al. Efficient direction-independent fog harvesting using a corona discharge device with a multi-electrode structure. Plasma Science and Technology, 2022, 24(9): 095502 doi: 10.1088/2058-6272/ac6be4
|
[11] |
Yan X, Sun D. Corona discharge behavior in foggy environments with flat plate and fin plate electrodes. Chemical Engineering Science, 2022, 259: 117790 doi: 10.1016/j.ces.2022.117790
|
[12] |
Ma S, Cheng H, Li J, et al. Large-scale ion generation for precipitation of atmospheric aerosols. Atmospheric Chemistry and Physics, 2020, 20(20): 11717-11727 doi: 10.5194/acp-20-11717-2020
|
[13] |
Chambers R, Beare S, Peak S, et al. Using ground-based ionisation to enhance rainfall in the Hajar Mountains, Oman. Arabian Journal of Geosciences, 2016, 9(7): 491 doi: 10.1007/s12517-016-2515-6
|
[14] |
Gao H, Wang G, Chen B, et al. Atmospheric-pressure non-equilibrium plasmas for effective abatement of pathogenic biological aerosols. Plasma Sources Science and Technology, 2021, 30: 053001 doi: 10.1088/1361-6595/abf51b
|
[15] |
Yang Y, Zhang H, Li C, et al. Diffusion charging of nanometer-sized liquid aerosol particles. Journal of Physics D: Applied Physics, 2021, 54(17): 175204 doi: 10.1088/1361-6463/abdefd
|
[16] |
Zhang M, Li D, Li C, et al. An electrostatic scheme realizing the complete interception of fog droplets by corona discharge-induced ion wind. Journal of Physics D: Applied Physics, 2021, 54(25): 255201
|
[17] |
He F, Li J, Li C, et al. Investigation on collision-coalescence of droplets under the synergistic effect of charge and sound waves: orthogonal design optimization. Journal of Physics D: Applied Physics, 2021, 55(7): 075204
|
[18] |
张明, 李丁晨, 李传等. 离子风的应用研究进展. 电工技术学报, 2021, 36(13): 2749-2766 (Zhang Ming, Li Dingchen, Li Chuan, et al. Research progress in the application of ion wind. Transactions of China Electrotechnical Society, 2021, 36(13): 2749-2766 (in Chinese) doi: 10.19595/j.cnki.1000-6753.tces.201091
Zhang Ming, Li Dingchen, Li Chuan, et al. Research progress in the application of ion wind. Transactions of China Electrotechnical Society, 2021, 36(13): 2749-2766 (in Chinese) doi: 10.19595/j.cnki.1000-6753.tces.201091
|
[19] |
Zhang JF, Wu XW, Qu JG, et al. Electrohydrodynamic and heat transfer characteristics of a planar ionic wind generator with flat electrodes. Applied Thermal Engineering, 2022, 211: 118508 doi: 10.1016/j.applthermaleng.2022.118508
|
[20] |
Su Z, Zong H, Liang H, et al. Optimization in frequency characteristics of an oscillating dielectric barrier discharge plasma actuator. Sensors and Actuators A: Physical, 2023, 351: 114195 doi: 10.1016/j.sna.2023.114195
|
[21] |
邓江革, 李挺. 非平衡等离子体点火助燃的研究进展. 航空动力学报, 2022, 37(10): 2295-2309 (Deng Jiangge, Li Ting. Research progress on non-equilibrium plasma-assisted ignition and combustion. Journal of Aerospace Power, 2022, 37(10): 2295-2309 (in Chinese)
Deng Jiangge, Li Ting. Research progress on non-equilibrium plasma-assisted ignition and combustion. Journal of Aerospace Power, 2022, 37(10): 2295-2309 (in Chinese)
|
[22] |
周思引, 聂万胜, 车学科等. 非平衡等离子体对甲烷–氧扩散火焰影响的实验研究. 力学学报, 2019, 51(5): 1336-1349 (Zhou Siyin, Nie Wansheng, Che Xueke, et al. Experiment study of effect of nonequilibrium plasma on methane-oxygen diffusive flame. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1336-1349 (in Chinese) doi: 10.6052/0459-1879-19-149
Zhou Siyin, Nie Wansheng, Che Xueke, et al. Experiment study of effect of nonequilibrium plasma on methane-oxygen diffusive flame. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1336-1349 (in Chinese) doi: 10.6052/0459-1879-19-149
|
[23] |
Zargar B, Kashkooli FM, Soltani M, et al. Mathematical modeling and simulation of bacterial distribution in an aerobiology chamber using computational fluid dynamics. American Journal of Infection Control, 2016, 44(95): S127-S137 doi: 10.1016/j.ajic.2016.06.005
|
[24] |
Lu W, Howarth AT, Adam N, et al. Modelling and measurement of airflow and aerosol particle distribution in a ventilated two-zone chamber. Building and Environment, 1996, 31(5): 417-423 doi: 10.1016/0360-1323(96)00019-4
|
[25] |
Cardinale T, Fazio P, Grandizio F. Numerical and experimental computation of airflow in a transport container. International Journal of Heat and Technology, 2016, 34(4): 734-742 doi: 10.18280/ijht.340426
|
[26] |
Tarasenko VF, Baksht EKh, Sosnin EA, et al. Characteristics of a pulse-periodic corona discharge in atmospheric air. Plasma Physics Reports, 2018, 44(5): 520-532 doi: 10.1134/S1063780X18050100
|
[27] |
Raizer YP, Braun C. Gas discharge physics. Applied Optics, 1992, 31: 2400-2401
|
[28] |
Chang J, Lawless PA, Yamamoto T. Corona discharge processes. IEEE Transactions on Plasma Science, 1991, 19(6): 1152-1166 doi: 10.1109/27.125038
|
[29] |
Zhang Y, Cheng H, Gao H, et al. On the charged aerosols generated by atmospheric pressure non-equilibrium plasma. High Voltage, 2021, 6(3): 408-425 doi: 10.1049/hve2.12036
|
[30] |
Wang C, Chen X, Ouyang J, et al. Pulse current of multi-needle negative corona discharge and its electromagnetic radiation characteristics. Energies, 2018, 11(11): 3120 doi: 10.3390/en11113120
|
[31] |
Shang K, Xue X, Wang X. Trichel pulse characteristics in negative dc corona discharge//Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 2011: 1-4
|
[32] |
Liu DW, Iza F, Kong MG. Electron avalanches and diffused γ-mode in radio-frequency capacitively coupled atmospheric-pressure microplasmas. Applied Physics Letters, 2009, 95(3): 031501 doi: 10.1063/1.3186073
|
[33] |
Liu DW, Iza F, Kong MG. Evolution of atmospheric-pressure RF plasmas as the excitation frequency increases. Plasma Processes and Polymers, 2009, 6(6-7): 446-450 doi: 10.1002/ppap.200930009
|
[34] |
高皓天, 刘大伟. 低成本脉冲源驱动的纳秒脉冲等离子体固氮. 南昌大学学报(理科版), 2022, 46(2): 168-172 (Gao Haotian, Liu Dawei. Nanosecond pulsed plasma driven by pulsed generator for nitrogen fixation. Journal of Nanchang University (Natural Science), 2022, 46(2): 168-172 (in Chinese) doi: 10.13764/j.cnki.ncdl.2022.02.008
Gao Haotian, Liu Dawei. Nanosecond pulsed plasma driven by pulsed generator for nitrogen fixation. Journal of Nanchang University (Natural Science), 2022, 46(2): 168-172 (in Chinese) doi: 10.13764/j.cnki.ncdl.2022.02.008
|
[35] |
Sekimoto K, Takayama M. Influence of needle voltage on the formation of negative core ions using atmospheric pressure corona discharge in air. International Journal of Mass Spectrometry, 2007, 261(1): 38-44 doi: 10.1016/j.ijms.2006.07.027
|
[36] |
Chen J, Davidson JH. Model of the negative DC corona plasma: comparison to the positive DC corona plasma. Plasma Chemistry and Plasma Processing, 2003, 23: 83-102 doi: 10.1023/A:1022468803203
|
[37] |
Li J, Zhang Y, Cheng H. The effect of corona discharges on droplets settlement. IEEE Transactions on Plasma Science, 2020, 99: 1-6
|
[38] |
Borra JP. Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration. Journal of Physics D: Applied Physics, 2006, 39(2): R19 doi: 10.1088/0022-3727/39/2/R01
|
[39] |
Zhang M, Xiao M, Han F, et al. Effects of electric field on Rayleigh limit of nanoscale water droplets: molecular dynamics simulation. Journal of Physics D: Applied Physics, 2022, 56(2): 025203
|
[40] |
Tan X, Qiu Y, Yang Y, et al. Enhanced growth of single droplet by control of equivalent charge on droplet. IEEE Transactions on Plasma Science, 2016, 44(11): 2724-2728 doi: 10.1109/TPS.2016.2608832
|
[1] | Yang Pengyu, Zhang Xin, Zuo Zhengyu, Ma Zhiming, Li Chang, Zhang Qiuyun. FLOW CONTROL ON THE DRAG OF AIRFOIL DURING LOW ANGLES OF ATTACK USING DIELECTRIC BARRIER DISCHARGE PLASMA ACTUATORS AT LOW REYNOLDS NUMBERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1043-1053. DOI: 10.6052/0459-1879-24-450 |
[2] | Zhang Haibao, Yin Xianyi, Sun Meng, Chen Qiang. RECENT PROGRESS ON DISCHARGE CHARACTERISTICS OF HELICON PLASMA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2913-2927. DOI: 10.6052/0459-1879-23-348 |
[3] | Wang Xucheng, Li Wenkai, Ai Fei, Liu Zhibing, Zhang Yuantao. DATA-DRIVEN PLASMA SIMULATION ON ATMOSPHERIC RADIO FREQUENCY DISCHARGE PLASMAS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2900-2912. DOI: 10.6052/0459-1879-23-347 |
[4] | Fang Chuan, Zhang Ziming, Wang Yaoting, Luo Lanyue, Zeng Shi, Li Zhihui, Li Heping. GROUND SIMULATION OF THERMAL ENVIRONMENT FOR REENTRY SPACECRAFTS WITH A SIX-PHASE AC DISCHARGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2818-2834. DOI: 10.6052/0459-1879-23-337 |
[5] | Zhang Xin, Wang Xunnian. RESEARCH PROGRESS AND OUTLOOK OF FLOW FIELD CREATED BY DIELECTRIC BARRIER DISCHARGE PLASMA ACTUATORS DRIVEN BY A SINUSOIDAL ALTERNATING CURRENT HIGH-VOLTAGE POWER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 285-298. DOI: 10.6052/0459-1879-22-377 |
[6] | Song Fuquan, Hu Xiao, Zhu Genmin, Zhu Weiyao. THE CHARACTERISTICS OF WATER FLOW DISPLACED BY GAS IN NANO ARRAYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 553-560. DOI: 10.6052/0459-1879-17-343 |
[7] | Yan Hong, Wang Song. EFFECT OF CONSTANT PRESSURE SPECIFIC HEAT IN SHOCK WAVE CONTROL USING SURFACE DISCHARGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 51-60. DOI: 10.6052/0459-1879-14-031 |
[8] | Li Chunxi, Chen Pengqiang, Ye Xuemin. EFFECT OF TWO-DIMENSIONAL MICROPILLAR ARRAYED TOPOGRAPHY ON SPREADING OF INSOLUBLE SURFACTANT-LADEN DROPLET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 665-672. DOI: 10.6052/0459-1879-14-099 |
[9] | Ding Jue, Wang Qingtao, Liu Yi, Ying Mengkan. NUMERICAL STUDY ON THE GROWTH PROCESS OF SECONDARY AEROSOL IN THE FOG[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 164-170. DOI: 10.6052/0459-1879-12-310 |
[10] | Growth of an array of cohesive crack points in brittle solids and the influence of crack spacing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 691-701. DOI: 10.6052/0459-1879-2010-4-lxxb2009-075 |
1. |
蔡琛芳,张隽研,沙心国,梁彬,袁湘江. 压缩拐角激波边界层干扰热流分布实验研究. 航天器环境工程. 2025(02): 167-173 .
![]() | |
2. |
郭同彪,张吉,李新亮. 压缩拐角强激波边界层干扰直接数值模拟研究. 空天防御. 2024(02): 29-35 .
![]() | |
3. |
刘晓东,刘朋欣,李辰,孙东,袁先旭. 高焓激波/湍流边界层干扰直接数值模拟. 航空学报. 2023(13): 57-72 .
![]() | |
4. |
段俊亦,童福林,李新亮,刘洪伟. 压缩-膨胀湍流边界层平均摩阻分解. 航空学报. 2022(01): 71-82 .
![]() | |
5. |
时文,田野,郭明明,刘源,张辰琳,钟富宇,乐嘉陵. 乙烯燃料超燃燃烧室流动特性与燃烧稳定性研究. 力学学报. 2022(03): 612-621 .
![]() | |
6. |
吕金洲,李世超,张小庆,杨大伟,刘建霞,贺佳佳. 脉冲风洞天平-模型支撑一体化测力技术研究. 推进技术. 2022(10): 392-399 .
![]() | |
7. |
钟巍,贾雷明,王澍霏,田宙. 一类高效率高分辨率加映射的WENO格式及其在复杂流动问题数值模拟中的应用. 力学学报. 2022(11): 3010-3031 .
![]() | |
8. |
周林,沈毅,葛任伟. 可压缩流动脉动压力数值模拟求解器HFS研究. 装备环境工程. 2021(03): 23-28 .
![]() | |
9. |
韦志龙,蒋勤. 基于WENO-THINC/WLIC模型的水气二相流数值模拟. 力学学报. 2021(04): 973-985 .
![]() | |
10. |
Yuting HONG,Zhufei LI,Jiming YANG. Scaling of interaction lengths for hypersonic shock wave/turbulent boundary layer interactions. Chinese Journal of Aeronautics. 2021(05): 504-509 .
![]() |
|
11. |
姚冰,郭锐. 高超音速激波边界层干扰Fluent软件数值模拟. 电脑编程技巧与维护. 2020(04): 68-69+76 .
![]() | |
12. |
周志超,许凌飞,任天荣,顾村锋. 基于GCV-FFT方法的超声速压缩拐角流场气动光学效应计算. 计算物理. 2020(03): 284-298 .
![]() | |
13. |
吴正园,莫凡,高振勋,蒋崇文,李椿萱. 湍流边界层与高温气体效应耦合的直接数值模拟. 空气动力学学报. 2020(06): 1111-1119+1128 .
![]() | |
14. |
李益文,王宇天,庞垒,肖良华,丁志文,段朋振. 进气道等离子体/磁流体流动控制研究进展. 力学学报. 2019(02): 311-321 .
![]() | |
15. |
童福林,周桂宇,周浩,张培红,李新亮. 激波/湍流边界层干扰物面剪切应力统计特性. 航空学报. 2019(05): 39-50 .
![]() | |
16. |
胡晨星,杨策. 采用不同黏性处理方法的宽无叶扩压器不稳定流动研究. 力学学报. 2019(06): 1775-1784 .
![]() | |
17. |
骆信,吴颂平. 改进的五阶WENO-Z+格式. 力学学报. 2019(06): 1927-1939 .
![]() | |
18. |
洪正,叶正寅. 各向同性湍流通过正激波的演化特征研究. 力学学报. 2018(06): 1356-1367 .
![]() |