Citation: | Zhao Xiang, Yuan Mingze, Fang Shitong, Li Yinghui. Piezoelectric vibration energy harvesters and dynamic analysis based on the spinning beam. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2228-2238. DOI: 10.6052/0459-1879-23-328 |
[1] |
Parinov IA, Cherpakov AV. Overview: state-of-the-art in the energy harvesting based on piezoelectric devices for last decade. Symmetry, 2022, 14: 765-814 doi: 10.3390/sym14040765
|
[2] |
Ebrahimi R, Ziaei-Rad S. Nonplanar vibration and flutter analysis of vertically spinning cantilevered piezoelectric pipes conveying fluid. Ocean Engineering, 2022, 261: 112180 doi: 10.1016/j.oceaneng.2022.112180
|
[3] |
张云顺, 赵香帅, 王万树. 旋转轮胎中压电悬臂梁离心距优化. 压电与声光, 2022, 44(1): 89-100 (Zhang Yunshun, Zhao Xiangshuai, Wang Wanshu. Optimization of centrifugal distance of piezoelectric cantilever beam in rotating tires. Piezoelectricity and Sound and Light, 2022, 44(1): 89-100 (in Chinese) doi: 10.11977/j.issn.1004-2474.2022.01.017
Zhang Yunshun, Zhao Xiangshuai, Wang Wanshu. Optimization of centrifugal distance of piezoelectric cantilever beam in rotating tires. Piezoelectricity and Sound and Light, 2022, 44(1): 89-100 (in Chinese) doi: 10.11977/j.issn.1004-2474.2022.01.017
|
[4] |
Qu YL, Jin F, Yang JS. Vibrating flexoelectric micro-beams as angular rate sensors. Micromachines, 2022, 13: 1243 doi: 10.3390/mi13081243
|
[5] |
Yang S, Hu HJ, Mo GD, et al. Dynamic modeling and analysis of an axially moving and spinning Rayleigh beam based on a time-varying element. Applied Mathematical Modelling, 2021, 95: 409-434 doi: 10.1016/j.apm.2021.01.049
|
[6] |
Xu H, Wang YQ, Zhang YF. Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method. Archive of Applied Mechanics, 2021, 91: 4817-4834 doi: 10.1007/s00419-021-02036-7
|
[7] |
Lee H. Dynamic response of a rotating Timoshenko shaft subject to axial forces and moving loads. Journal of Sound and Vibration, 1995, 181: 169 doi: 10.1006/jsvi.1995.0132
|
[8] |
Mamandi A, Kargarnovin MH. Nonlinear dynamic analysis of an axially loaded rotating Timoshenko beam with extensional condition included subjected to general type of force moving along the beam length. Journal of Vibration and Control, 2013, 19: 2448-2458 doi: 10.1177/1077546312456723
|
[9] |
Ouyang HJ, Wang MJ. A dynamic model for a rotating beam subjected to axially moving forces. Journal of Sound and Vibration, 2007, 308: 674-682 doi: 10.1016/j.jsv.2007.03.082
|
[10] |
Zu JWZ, Han RP. Natural frequencies and normal modes of a spinning Timoshenko beam with general boundary conditions. Journal of Applied Mechanics, 1992, 59: 197-204 doi: 10.1115/1.2899488
|
[11] |
Erturk A, Inman DJ. Issues in mathematical modeling of piezoelectric energy harvesters. Smart Materials and Structures, 2008, 17: 065016 doi: 10.1088/0964-1726/17/6/065016
|
[12] |
Erturk A, Inman DJ. On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. Journal of Intelligent Material Systems and Structures, 2008, 19: 1311-1325 doi: 10.1177/1045389X07085639
|
[13] |
Zhao X, Yang EC, Li YH, et al. Closed-form solutions for forced vibrations of piezoelectric energy harvesters by means of Green’s functions. Journal of Intelligent Material Systems and Structures, 2017, 28: 2372-2387 doi: 10.1177/1045389X17689927
|
[14] |
何燕丽, 赵翔. 曲梁压电俘能器强迫振动的格林函数解. 力学学报, 2019, 51: 1170-1179 (He Yanli, Zhao Xiang. Closed-form solutions for forced vibrations of curved piezoelectric energy harvesters by means of green’s functions. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51: 1170-1179 (in Chinese) doi: 10.6052/0459-1879-19-007
He Yanli, Zhao Xiang. Closed-form solutions for forced vibrations of curved piezoelectric energy harvesters by means of green’s functions. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51: 1170-1179 (in Chinese) doi: 10.6052/0459-1879-19-007
|
[15] |
赵翔, 李思谊, 李映辉. 基于压电振动能量俘获的弯曲结构损伤监测研究. 力学学报, 2021, 53: 3035-3044 (Zhao Xiang, Li Siyi, Li Yinghui. The research on damage detection of curved beam based on piezoelectric vibration energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53: 3035-3044 (in Chinese) doi: 10.6052/0459-1879-21-452
Zhao Xiang, Li Siyi, Li Yinghui. The research on damage detection of curved beam based on piezoelectric vibration energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53: 3035-3044 (in Chinese) doi: 10.6052/0459-1879-21-452
|
[16] |
Niazi K, Parsi MJK, Mohammadi M, et al. Nonlinear dynamic analysis of hybrid piezoelectric-magnetostrictive energy-harvesting systems. Journal of Sensors, 2022, 2022(S): 8921779
|
[17] |
Priore ED, Romano GP, Lampani L. Coupled electro-aeroelastic energy harvester model based on piezoelectric transducers, VIV-galloping interaction and nonlinear switching circuits. Smart Materials and Structures, 2023, 32: 075012 doi: 10.1088/1361-665X/acdb15
|
[18] |
Zhao X, Zhu DW, Li YH. Closed-form solutions of bending-torsion coupled forced vibrations of a piezoelectric energy harvester under a fluid vortex. Journal of Vibration and Acoustics, 2022, 144: 021010 doi: 10.1115/1.4051773
|
[19] |
Li W, Yang XD, Zhang W, et al. Free vibrations and energy transfer analysis of the vibrating piezoelectric gyroscope based on the linear and nonlinear decoupling methods. Journal of Vibration and Acoustics, 2019, 141: 041015 doi: 10.1115/1.4043062
|
[20] |
Li W, Yang XD, Zhang W, et al. Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities. Acta Mechanica Sinica, 2019, 35: 879-893 doi: 10.1007/s10409-019-00851-4
|
[21] |
周兰伟, 陈国平, 孙东阳等. 基于模拟退火算法的旋转梁压电分流电路优化. 振动. 测试与诊断, 2016, 36: 315-320 (Zhou Lanwei, Chen Guoping, Sun Dongyang, et al. Optimization of rotating beam piezoelectric shunt circuit based on simulated annealing algorithm. Journal of Vibration,Measurement &Diagnosis, 2016, 36: 315-320 (in Chinese)
Zhou Lanwei, Chen Guoping, Sun Dongyang, et al. Optimization of rotating beam piezoelectric shunt circuit based on simulated annealing algorithm. Journal of Vibration, Measurement & Diagnosis, 2016, 36: 315-320 (in Chinese)
|
[22] |
Wang J, Li D, Jiang J. Coupled flexural-torsional vibration of spinning smart beams with asymmetric cross sections. Finite Elements in Analysis and Design, 2015, 105: 16-25 doi: 10.1016/j.finel.2015.06.008
|
[23] |
Yang JS, Fang HY. Analysis of a rotating elastic beam with piezoelectric films as an angular rate sensor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49: 798-804 doi: 10.1109/TUFFC.2002.1009338
|
[24] |
Banerjee J, Su HJC. Development of a dynamic stiffness matrix for free vibration analysis of spinning beams. Computers and Structures, 2004, 82: 2189-2197 doi: 10.1016/j.compstruc.2004.03.058
|
[25] |
Erturk A, Inman DJ. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics, 2008, 130: 041002 doi: 10.1115/1.2890402
|
[26] |
Li X, Ding H, Chen W. Three-dimensional analytical solution for a transversely isotropic functionally graded piezoelectric circular plate subject to a uniform electric potential difference. Science in China, Series G: Physics, Mechanics and Astronomy, 2008, 51: 1116-1125 doi: 10.1007/s11433-008-0100-z
|
[27] |
Danesh-Yazdi AH, Elvin N, Andreopoulos Y. Green׳s function method for piezoelectric energy harvesting beams. Journal of Sound and Vibration, 2014, 333: 3092-3108 doi: 10.1016/j.jsv.2014.02.023
|
[28] |
Zhu K, Chung J. Nonlinear lateral vibrations of a deploying Euler–Bernoulli beam with a spinning motion. International Journal of Mechanical Sciences, 2015, 90: 200-212 doi: 10.1016/j.ijmecsci.2014.11.009
|
[29] |
Perng YL, Chin JH. Theoretical and experimental investigations on the spinning BTA deep-hole drill shafts containing fluids and subject to axial forces. International Journal of Mechanical Sciences, 1999, 41: 1301-1322 doi: 10.1016/S0020-7403(98)00091-5
|
[30] |
Leadenhan S, Erturk A. Unifie nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dynamics, 2015, 79(3): 1727-1743 doi: 10.1007/s11071-014-1770-x
|
[1] | Han Qinkai, Gao Shuai, Shao Qingyang, Chu Fulei. NONLINEAR ELECTROMECHANICAL MODELING OF PENDULUM-TYPE TRIBOELECTRIC NANOGENERATORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2178-2188. DOI: 10.6052/0459-1879-23-197 |
[2] | Guo Ziwen, Zhang Gongye, Mi Changwen. ON THE MAGNETICALLY INDUCED ELECTROMECHANICAL COUPLING OF CENTROSYMMETRIC FLEXOELECTRIC SANDWICH PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1517-1525. DOI: 10.6052/0459-1879-23-103 |
[3] | Zhao Xiang, Li Siyi, Li Yinghui. THE RESEARCH ON DAMAGE DETECTION OF CURVED BEAM BASED ON PIEZOELECTRIC VIBRATION ENERGY HARVESTER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3035-3044. DOI: 10.6052/0459-1879-21-452 |
[4] | He Yanli, Zhao Xiang. CLOSED-FORM SOLUTIONS FOR FORCED VIBRATIONS OF CURVED PIEZOELECTRIC ENERGY HARVESTERS BY MEANS OF GREEN'S FUNCTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1170-1179. DOI: 10.6052/0459-1879-19-007 |
[5] | Zheng Yuxuan, Chen Liang, Zhou Fenghua, Wang Lili. USING LAPLACE TRANSFORM TO SOLVE THE VISCOELASTIC WAVE PROBLEMS IN THE SHPB EXPERIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 843-852. DOI: 10.6052/0459-1879-14-002 |
[6] | Fan Peng, Yaojun Chen, Yifan Liu, Yiming Fu. Numerical inversion of Laplace transfors in viscoelastic problems by Fourier series expansion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 215-221. DOI: 10.6052/0459-1879-2008-2-2007-142 |
[7] | Hongliang Dai, Yiming Fu, J.H. Yang. Electromagnetoelastic behaviors of functionally graded piezoelectric[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 55-63. DOI: 10.6052/0459-1879-2007-1-2006-127 |
[8] | An experimental investigation into the complex electromechanical behavior of PZT53[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 413-420. DOI: 10.6052/0459-1879-2005-4-2004-208 |
[9] | 有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302 |
[10] | ELASTIC/VISCOPLASTIC SOLUTION OF TWISTY COLUMNS BY MEANS OF LAPLACE FUNCTIONAL TRANSFORMAIIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(4): 434-439. DOI: 10.6052/0459-1879-1995-4-1995-451 |
1. |
陈嘉豪,胡志强. 半潜式海上浮式风机气动阻尼特性研究. 力学学报. 2019(04): 1255-1265 .
![]() | |
2. |
陈倩,张汉哲,吴钦,傅晓英,张晶,王国玉. 复合材料水翼水动力与结构强度特性数值研究. 力学学报. 2019(05): 1350-1362 .
![]() |